Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 104(6): 6535-6547, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33741165

ABSTRACT

The presence of pathogenic Shiga toxin-producing Escherichia coli (STEC) in dairy products represents a public health concern because of its ability to produce the toxins Stx1 and Stx2, which cause intestinal diseases. Monitoring the stages of milk production and checking dairy products for contamination are crucial steps to ensure dairy safety. This study aimed to report the occurrence of thermotolerant coliforms, E. coli, and STEC strains in pasteurized dairy products and to evaluate the antibiotic resistance profiles, serotypes, and characterizations of the STEC isolates by pulsed-field gel electrophoresis. We obtained a total of 138 pasteurized dairy products from 15 processing plants in Bahia, Brazil, to examine coliforms, E. coli, and STEC strains. We found that 43% of samples (59/138) contained thermotolerant coliforms, and 30% (42/138) did not comply with Brazilian regulations. Overall, 6% (9/138) were positive for E. coli and 4% (5/138) were positive for STEC. We recovered 9 STEC isolates from pasteurized cream (2/9), Minas Padrão cheese (2/9), Minas Frescal cheese (4/9), and ricotta (1/9). All isolates were stx2-positive, and 2 were eae-positive. All isolates were negative for the "big 6" STEC serogroups, belonging instead to serotypes ONT:HNT, ONT:H12, O148:H-, OR:H40, OR:HNT, and O148:HNT. Pulsed-field gel electrophoresis revealed 100% genetic similarity among 3 isolates from 2 different samples produced in the same production facility, which may suggest cross-contamination. As well, we found isolates that were 98% similar but in samples produced in different production facilities, suggesting a mutual source of contamination or a circulating strain. Two STEC strains exhibited resistance to streptomycin. Although the isolates presented a low resistance profile and no strain belonged to the "big 6" pathogenic group, the circulation of stx2-positive STEC strains in ready-to-eat products highlights the importance of epidemiological surveillance inside the Brazilian dairy chain.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Brazil , Dairy Products , Escherichia coli Infections/veterinary , Serotyping/veterinary , Shiga-Toxigenic Escherichia coli/genetics
2.
Microorganisms ; 8(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861870

ABSTRACT

The Brazilian state of Mato Grosso is the largest producer and exporter of beef in the country, but few studies of relevance have been conducted to evaluate the microbiological safety of its products. This study aimed to estimate the prevalence of Listeria monocytogenes (LM) in export-approved beef from Mato Grosso and to characterize the isolates in terms of molecular properties and antimicrobial resistance. From a total of 50 samples analyzed, Listeria sp. was isolated in 18 (36% prevalence). Listeria monocytogenes was confirmed in 6 (12% prevalence). Among the serotype groups assessed by multiplex PCR, serotype 4 (4b, 4d or 4e) was the most prevalent. Although antibiotic resistance was not an issue, two strains isolated from different plants showed high resistance to sodium hypochlorite. Overall, this scenario causes concern because it puts at risk not only the Brazilian customer, but also the population of countries that import beef from Mato Grosso.

3.
Biochem Biophys Res Commun ; 326(3): 607-13, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15596142

ABSTRACT

Bacteroides fragilis is the anaerobe most commonly recoverable from clinical specimens. The wide genetic diversity of this bacterium related with virulence potential is still an open question. In this study, we analyzed the morphological aspects and microbicide action of MØ during interactions with B. fragilis. A filamentous cytoplasm content release and a different actin organization colocalized with iNOS were detected. It was also possible to observe the reduction of NO production in the same conditions. The scanning electron microscopy showed the formation of pore-like structures in the surface of macrophages in the bacterial presence and by transmission electron microscopy we could observe the extrusion of cytoplasm contents as well as the condensation of chromatin in the nucleus periphery. These data suggest the existence of an inhibitory mechanism developed by B. fragilis strains for one of the macrophage microbicide actions.


Subject(s)
Bacteroides Infections/metabolism , Bacteroides fragilis/metabolism , Macrophages, Peritoneal/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Actins/metabolism , Animals , Bacteroides fragilis/pathogenicity , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/pathology , Male , Mice , Microscopy, Electron, Scanning , Microscopy, Phase-Contrast , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II
SELECTION OF CITATIONS
SEARCH DETAIL
...