Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 13793, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067219

ABSTRACT

When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.

2.
Opt Lett ; 41(23): 5576-5579, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27906243

ABSTRACT

We experimentally investigate the application of magnetic fluids (MFs) on integrated silicon photonics. Using a ferrofluid-clad silicon microring resonator, we demonstrate active control of resonances by applying an external magnetic field. Relatively high loaded quality factors on the order of 6000 are achieved, despite the optical losses introduced by the magnetic nanoparticles. We demonstrate resonance shifts of 185 pm in response to a 110 Oe strong magnetic field, corresponding to an overall refractive index change of -3.2×10-3 for the cladding MF. The combination of MFs and integrated photonics could potentially lead to the development of magnetically controllable optical devices and ultra-compact cost-effective magnetic field sensors.

3.
Opt Lett ; 41(22): 5238-5241, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27842102

ABSTRACT

Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

SELECTION OF CITATIONS
SEARCH DETAIL
...