Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 9(11): 12, 2020 10.
Article in English | MEDLINE | ID: mdl-33133774

ABSTRACT

Purpose: To use a deep learning model to develop a fully automated method (fully semantic network and graph search [FS-GS]) of retinal segmentation for optical coherence tomography (OCT) images from patients with Stargardt disease. Methods: Eighty-seven manually segmented (ground truth) OCT volume scan sets (5171 B-scans) from 22 patients with Stargardt disease were used for training, validation and testing of a novel retinal boundary detection approach (FS-GS) that combines a fully semantic deep learning segmentation method, which generates a per-pixel class prediction map with a graph-search method to extract retinal boundary positions. The performance was evaluated using the mean absolute boundary error and the differences in two clinical metrics (retinal thickness and volume) compared with the ground truth. The performance of a separate deep learning method and two publicly available software algorithms were also evaluated against the ground truth. Results: FS-GS showed an excellent agreement with the ground truth, with a boundary mean absolute error of 0.23 and 1.12 pixels for the internal limiting membrane and the base of retinal pigment epithelium or Bruch's membrane, respectively. The mean difference in thickness and volume across the central 6 mm zone were 2.10 µm and 0.059 mm3. The performance of the proposed method was more accurate and consistent than the publicly available OCTExplorer and AURA tools. Conclusions: The FS-GS method delivers good performance in segmentation of OCT images of pathologic retina in Stargardt disease. Translational Relevance: Deep learning models can provide a robust method for retinal segmentation and support a high-throughput analysis pipeline for measuring retinal thickness and volume in Stargardt disease.


Subject(s)
Deep Learning , Tomography, Optical Coherence , Humans , Retina/diagnostic imaging , Retinal Pigment Epithelium , Stargardt Disease
SELECTION OF CITATIONS
SEARCH DETAIL
...