Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7762, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31123287

ABSTRACT

Rapidly quenched ternary Ni-Mn-T (T = In, Sn) alloys exhibit features associated with magnetic skyrmions, so that XRD, TEM, EDS, SAED and HREM investigations were carried out for structural characterization on the two alloy systems. In this paper, we report a new type of Mn-rich Heusler compound with a cubic unit cell, a = 0.9150 nm in Ni-Mn-In and a = 0.9051 nm in Ni-Mn-Sn, which coexist with a Ni-rich full-Heusler compound with defects, a = 0.6094 nm in Ni-Mn-In and a = 0.6034 nm in Ni-Mn-Sn. A further analysis of the experimental results reveals a close structural relationship between these two compounds.

2.
J Phys Condens Matter ; 30(47): 475801, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30378571

ABSTRACT

Interplay between structural and magnetic order parameters is one of the key mechanisms of tuning properties of materials intended for device applications in spintronics. Here, using density functional calculations, we study combined effects of tetragonal distortion and non-collinear magnetic order in Mn2PtSn. We show that this material has two energetically close energy minimums corresponding to tetragonal lattice. In one of these phases, Mn2PtSn exhibits ferrimagnetic order with nearly fully compensated total magnetic moment, while in the other phase that corresponds to the lowest energy, a non-collinear magnetic arrangement emerges, with very large canting angle of the Mn local magnetic moments. The non-collinear alignment is explained through the interplay of exchange couplings between nearest and next nearest neighbor Mn atoms. Results are compared with those reported in recent literature, both experimental and theoretical.

SELECTION OF CITATIONS
SEARCH DETAIL
...