Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Anim Cogn ; 27(1): 53, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066805

ABSTRACT

Despite their young age, zebrafish larvae have a well-developed visual system and can distinguish between different visual stimuli. First, we investigated if the first visual surroundings the larvae experience during the first days after hatching shape their habitat preference. Indeed, these animals seem to "imprint" on the first surroundings they see and select visual stimuli accordingly at 7 days post fertilization (dpf). In particular, if zebrafish larvae experience a bar background just after hatching, they later on prefer bars over white stimuli, and vice versa. We then used this acquired preference for bars to investigate innate numerical abilities. We wanted to specifically test if the zebrafish larvae show real numerical abilities or if they rely on a lower-level mechanism-i.e. spatial frequency-to discriminate between two different numerosities. When we matched the spatial frequency in stimuli with different numbers of bars, the larvae reliably selected the higher numerosity. A previous study has ruled out that 7 dpf zebrafish larvae use convex hull, cumulative surface area and density to choose between two numerosities. Therefore, our results indicate that zebrafish larvae rely on real numerical abilities rather than other cues, including spatial frequency, when spontaneously comparing two sets with different numbers of bars.


Subject(s)
Larva , Zebrafish , Animals , Visual Perception , Cues , Space Perception , Photic Stimulation , Choice Behavior , Mathematical Concepts
2.
Behav Brain Sci ; 47: e144, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934426

ABSTRACT

Innateness of core knowledge mechanisms (in the form of "cognitive priors") can be revealed by proper comparisons of altricial and precocial species. Cognitive priors and sensitive periods in their expression may also provide clues for the development of plausible artificial intelligence systems.


Subject(s)
Knowledge , Humans , Cognition/physiology , Artificial Intelligence , Animals
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38918076

ABSTRACT

Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.


Subject(s)
Animals, Newborn , Chickens , Motion Perception , Animals , Motion Perception/physiology , Brain/physiology , Proto-Oncogene Proteins c-fos/metabolism , Photic Stimulation/methods
4.
Front Neurosci ; 18: 1404174, 2024.
Article in English | MEDLINE | ID: mdl-38812973

ABSTRACT

For many animals, faces are a vitally important visual stimulus. Hence, it is not surprising that face perception has become a very popular research topic in neuroscience, with ca. 2000 papers published every year. As a result, significant progress has been made in understanding the intricate mechanisms underlying this phenomenon. However, the ontogeny of face perception, in particular the role of innate predispositions, remains largely unexplored at the neural level. Several influential studies in monkeys have suggested that seeing faces is necessary for the development of the face-selective brain domains. At the same time, behavioural experiments with newborn human babies and newly-hatched domestic chicks demonstrate that a spontaneous preference towards faces emerges early in life without pre-existing experience. Moreover, we were recently able to record face-selective neural responses in the brain of young, face-naïve chicks, thus demonstrating the existence of an innate face detection mechanism. In this review, we discuss these seemingly contradictory results and propose potential experimental approaches to resolve some of the open questions.

5.
Res Sq ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496470

ABSTRACT

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm. Recently, advances in functional magnetic resonance imaging (fMRI) in the avian brain have opened new windows to explore bird's brain function at the network level. Here, we developed a ground-breaking non-invasive functional MRI technique for awake, newly hatched chicks that record whole-brain BOLD signal changes throughout imprinting experiments. While the initial phases of memory acquisition imprinting behaviour have been unravelled, the long-term storage and retrieval components of imprinting memories are still unknown. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This platform opens up new avenues for exploring the broader landscape of learning and memory processes in neonatal vertebrates, contributing to a more comprehensive understanding of the intricate interplay between behaviour and brain networks.

6.
iScience ; 27(3): 109268, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439979

ABSTRACT

Sensory stimulation during the prenatal period has been argued to be a main factor in establishing asymmetry in the vertebrate brain. However, though largely studied in behavior and neuroanatomy, nothing is known on the effects of light stimulation in embryo on the activities of single neurons. We performed single-unit recordings from the left and right entopallium of dark- and light-incubated chicks, following ipsi-, contra-, and bilateral visual stimulation. Light incubation increased the general responsiveness of visual neurons in both the left and the right entopallium. Entopallial responses were clearly lateralized in dark-incubated chicks, which showed a general right-hemispheric dominance. This could be suppressed or inverted after light incubation, revealing the presence of both spontaneous and light-dependent asymmetries. These results suggest that asymmetry in single-neuron activity is present at the onset and can be modulated by environmental stimuli such as light exposure in embryos.

7.
J Exp Biol ; 227(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38323420

ABSTRACT

Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.


Subject(s)
Chickens , Orientation, Spatial , Animals , Orientation , Space Perception , Cues
8.
Front Neurosci ; 18: 1279947, 2024.
Article in English | MEDLINE | ID: mdl-38356650

ABSTRACT

Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.

9.
iScience ; 27(2): 108793, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38299110

ABSTRACT

Sensitivity to face-to-face stimuli configurations, which likely indicates interaction, seems to appear early in infants' development, and recently a preference for face-to-face (vs. other spatial configurations) has been shown to occur in macaque monkeys. It is unknown, however, whether such a preference is acquired through experience or as an evolutionary-given biological predisposition. Here, we exploited a precocial social animal, the domestic chick, as a model system to address this question. Visually naive chicks were tested for their spontaneous preferences for face-to-face vs. back-to-back hen dyads of point-light displays depicting biological motion. We found that female chicks have a spontaneous preference for the facing interactive configuration. Males showed no preference, as expected due to the well-known low social motivation of males in this highly polygynous species. These findings support the idea of an innate and sex-dependent predisposition toward social and interacting stimuli in a vertebrate brain such as that of chicks.

10.
iScience ; 26(10): 108035, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860770

ABSTRACT

Honeybees can estimate quantities having different dimensions: continuous and uncountable such as the relative size of visual objects in an array, or discrete and countable such as the number of objects of the array. Honeybees can transfer quantity discrimination (i.e., choosing the larger/smaller stimulus) from number to size. Here, we investigated whether honeybees could also generalize from the size (continuous) to the number (discrete) dimension. We trained free-flying foragers to discriminate between large- and small-size elements. At test, bees were presented with a comparison between larger and smaller numerosities controlled for different continuous variables covarying with numerosity such as total area, total perimeter, convex hull, and element size. Results showed that bees generalized from the size to the numerical dimension of the stimuli. This cross-dimensional transfer supports the idea of a universal mechanism for the encoding of abstract magnitudes in invertebrate species comparable to that of vertebrate species.

11.
Elife ; 122023 09 05.
Article in English | MEDLINE | ID: mdl-37668506

ABSTRACT

The idea that sensory stimulation to the embryo (in utero or in ovo) may be crucial for brain development is widespread. Unfortunately, up to now evidence was only indirect because mapping of embryonic brain activity in vivo is challenging. Here, we applied for the first time manganese enhanced magnetic resonance imaging (MEMRI), a functional imaging method, to the eggs of domestic chicks. We revealed light-induced brain asymmetry by comparing embryonic brain activity in vivo of eggs that were stimulated by light or maintained in the darkness. Our protocol paves the way to investigation of the effects of a variety of sensory stimulations on brain activity in embryo.


Subject(s)
Brain , Manganese , Animals , Brain/diagnostic imaging , Magnetic Resonance Imaging , Embryo, Mammalian , Chickens
12.
Biosystems ; 232: 104999, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574182

ABSTRACT

Perception of numerousness, i.e. number of items in a set, is an important cognitive ability, which is present in several animal taxa. In spite of obvious differences in neuroanatomy, insects, fishes, reptiles, birds, and mammals all possess a "number sense". Furthermore, information regarding numbers can belong to different sensory modalities: animals can estimate a number of visual items, a number of tones, or a number of their own movements. Given both the heterogeneity of stimuli and of the brains processing these stimuli, it is hard to imagine that number cognition can be traced back to the same evolutionary conserved neural pathway. However, neurons that selectively respond to the number of stimuli have been described in higher-order integration brain centres both in primates and in birds, two evolutionary distant groups. Although most probably not of the same evolutionary origin, these number neurons share remarkable similarities in their response properties. Instead of homology, this similarity might result from computational advantages of the underlying coding mechanism. This means that one might expect numerousness information to undergo similar steps of neural processing even in evolutionary distant neural pathways. Following this logic, in this review we summarize our current knowledge of how numerousness is processed in the brain from sensory input to coding of abstract information in the higher-order integration centres. We also propose a list of key open questions that might promote future research on number cognition.


Subject(s)
Brain , Cognition , Animals , Cognition/physiology , Biological Evolution , Mammals , Neurons/physiology
13.
Anim Cogn ; 26(4): 1177-1189, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36933076

ABSTRACT

Domestic chicks (Gallus gallus domesticus) have been widely used as a model to study the motion cues that allow visually naïve organisms to detect animate agents shortly after hatching/birth. Our previous work has shown that chicks prefer to approach agents whose main body axis and motion direction are aligned (a feature typical of creatures whose motion is constrained by a bilaterally symmetric body plan). However, it has never been investigated whether chicks are also sensitive to the fact that an agent maintains a stable front-back body orientation in motion (i.e. consistency in which end is leading and which trailing). This is another feature typical of bilateria, which is also associated with the detection of animate agents in humans. The aim of the present study was to fill this gap. Contrary to our initial expectations, after testing 300 chicks across 3 experimental conditions, we found a recurrent preference for the agent which did not maintain a stable front-back body orientation. Since this preference was limited to female chicks, the results are discussed also in relation to sex differences in the social behaviour of this model. Overall, we show for the first time that chicks can discriminate agents based on the stability of their front-back orientation. The unexpected direction of the effect could reflect a preference for agents' whose behaviour is less predictable. Chicks may prefer agents with greater behavioural variability, a trait which has been associated with animate agents, or have a tendency to explore agents performing "odd behaviours".


Subject(s)
Chickens , Motion Perception , Female , Humans , Male , Animals , Social Behavior , Cues
15.
iScience ; 26(1): 105704, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36582821

ABSTRACT

BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.

16.
Anim Cogn ; 26(1): 129-140, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36222937

ABSTRACT

Cognitive scientists, social psychologists, computer scientists, neuroscientists, ethologists and many others have all wondered how brains detect and interpret the motion of living organisms. It appears that specific cues, incorporated into our brains by natural selection, serve to signal the presence of living organisms. A simple geometric figure such as a triangle put in motion with specific kinematic rules can look alive, and it can even seem to have intentions and goals. In this article, we survey decades of parallel investigations on the motion cues that drive animacy perception-the sensation that something is alive-in non-human animals, especially in precocial species, such as the domestic chick, to identify inborn biological predispositions. At the same time, we highlight the relevance of these studies for an understanding of human typical and atypical cognitive development.


Subject(s)
Motion Perception , Animals , Brain , Cognition , Chickens , Cues
17.
Sensors (Basel) ; 22(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36560172

ABSTRACT

Recent studies show that the integrity of core perceptual and cognitive functions may be tested in a short time with Steady-State Visual Evoked Potentials (SSVEP) with low stimulation frequencies, between 1 and 10 Hz. Wearable EEG systems provide unique opportunities to test these brain functions on diverse populations in out-of-the-lab conditions. However, they also pose significant challenges as the number of EEG channels is typically limited, and the recording conditions might induce high noise levels, particularly for low frequencies. Here we tested the performance of Normalized Canonical Correlation Analysis (NCCA), a frequency-normalized version of CCA, to quantify SSVEP from wearable EEG data with stimulation frequencies ranging from 1 to 10 Hz. We validated NCCA on data collected with an 8-channel wearable wireless EEG system based on BioWolf, a compact, ultra-light, ultra-low-power recording platform. The results show that NCCA correctly and rapidly detects SSVEP at the stimulation frequency within a few cycles of stimulation, even at the lowest frequency (4 s recordings are sufficient for a stimulation frequency of 1 Hz), outperforming a state-of-the-art normalized power spectral measure. Importantly, no preliminary artifact correction or channel selection was required. Potential applications of these results to research and clinical studies are discussed.


Subject(s)
Brain-Computer Interfaces , Wearable Electronic Devices , Electroencephalography/methods , Evoked Potentials, Visual , Canonical Correlation Analysis , Photic Stimulation/methods , Algorithms
18.
Proc Biol Sci ; 289(1986): 20221622, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36350221

ABSTRACT

The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.e. the time and direction of motion of one object can be predicted from the time and direction of motion of another object). We presented a 'social aggregation' stimulus, in which three smaller discs repeatedly converged towards a bigger disc, moving in a manner resembling a mother hen and chicks (versus a control stimulus lacking such interactions). Remarkably, chicks preferred stimuli in which the timing of the motion of one object could not be predicted by that of other objects. This is the first demonstration of a sensitivity to the temporal relationships between the motion of different objects in naive animals, a trait that could be at the basis of the development of the perception of social interaction and goal-directed behaviours.


Subject(s)
Chickens , Motion Perception , Humans , Animals , Female , Motion
19.
Front Neuroanat ; 16: 943504, 2022.
Article in English | MEDLINE | ID: mdl-35911657

ABSTRACT

An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.

20.
Proc Natl Acad Sci U S A ; 119(32): e2201039119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917348

ABSTRACT

Numerical cognition is ubiquitous in the animal kingdom. Domestic chicks are a widely used developmental model for studying numerical cognition. Soon after hatching, chicks can perform sophisticated numerical tasks. Nevertheless, the neural basis of their numerical abilities has remained unknown. Here, we describe number neurons in the caudal nidopallium (functionally equivalent to the mammalian prefrontal cortex) of young domestic chicks. Number neurons that we found in young chicks showed remarkable similarities to those in the prefrontal cortex and caudal nidopallium of adult animals. Thus, our results suggest that numerosity perception based on number neurons might be an inborn feature of the vertebrate brain.


Subject(s)
Brain , Cognition , Neurons , Perception , Animals , Brain/cytology , Chickens , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...