Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 67(22): e2300374, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37712099

ABSTRACT

SCOPE: Adipocyte-derived extracellular vesicles (AdEVs) convey lipids that can play a role in the energy homeostasis. Vitamin D (VD) has been shown to limit the metabolic inflammation as it decreases inflammatory markers expression in adipose tissue (AT). However, VD effect on adipocytes-derived EVs has never been investigated. METHODS AND RESULTS: Thus, the aim of this study is to evaluate the AdEVs lipid composition by LC-MS/MS approach in 3T3-L1 cells treated with VD or/and pro-inflammatory factor (tumor necrosis factor α [TNFα]). Among all lipid species, four are highlighted (glycerolipids, phospholipids, lysophospholipids, and sphingolipids) with a differential content between small (sEVs) and large EVs (lEVs). This study also observes that VD alone modulates EV lipid species involved in membrane fluidity and in the budding of membrane. EVs treated with VD under inflammatory conditions have different lipid profiles than the control group, which is more pronounced in lEVs. Indeed, 25 lipid species are significantly modulated in lEVs, compared with only seven lipid species in sEVs. CONCLUSIONS: This study concludes that VD, alone or under inflammatory conditions, is associated with specific lipidomic signature of sEVs and lEVs. These observations reinforce current knowledge on the anti-inflammatory effect of VD.


Subject(s)
Extracellular Vesicles , Vitamin D , Vitamin D/pharmacology , Vitamin D/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Vitamins/pharmacology , Adipocytes , Lipids/pharmacology
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569425

ABSTRACT

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) which is the main cause of vision loss in the working-age population. Currently known risk factors such as age, disease duration, and hemoglobin A1c lack sufficient efficiency to distinguish patients with early stages of DR. A total of 194 plasma samples were collected from patients with type 2 DM and DR (moderate to proliferative (PDR) or control (no or mild DR) matched for age, gender, diabetes duration, HbA1c, and hypertension. Untargeted lipidomic and metabolomic approaches were performed. Partial-least square methods were used to analyze the datasets. Levels of 69 metabolites and 85 lipid species were found to be significantly different in the plasma of DR patients versus controls. Metabolite set enrichment analysis indicated that pathways such as metabolism of branched-chain amino acids (methylglutaryl carnitine p = 0.004), the kynurenine pathway (tryptophan p < 0.001), and microbiota metabolism (p-Cresol sulfate p = 0.004) were among the most enriched deregulated pathways in the DR group. Moreover, Glucose-6-phosphate (p = 0.001) and N-methyl-glutamate (p < 0.001) were upregulated in DR. Subgroup analyses identified a specific signature associated with PDR, macular oedema, and DR associated with chronic kidney disease. Phosphatidylcholines (PCs) were dysregulated, with an increase of alkyl-PCs (PC O-42:5 p < 0.001) in DR, while non-ether PCs (PC 14:0-16:1, p < 0.001; PC 18:2-14:0, p < 0.001) were decreased in the DR group. Through an unbiased multiomics approach, we identified metabolites and lipid species that interestingly discriminate patients with or without DR. These features could be a research basis to identify new potential plasma biomarkers to promote 3P medicine.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Diabetic Retinopathy/metabolism , Lipidomics , Multiomics , Diabetes Mellitus, Type 2/complications , Metabolomics , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL
...