Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7: 39833, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106050

ABSTRACT

A key to the success of chimeric antigen receptor (CAR) T-cell based therapies greatly rely on the capacity to identify and target antigens with expression restrained to tumor cells. Here we present a strategy to generate CAR T-cells that are only effective locally (tumor tissue), potentially also increasing the choice of targetable antigens. By fusing an oxygen sensitive subdomain of HIF1α to a CAR scaffold, we generated CAR T-cells that are responsive to a hypoxic environment, a hallmark of certain tumors. Along with the development of oxygen-sensitive CAR T-cells, this work also provides a basic framework to use a multi-chain CAR as a platform to create the next generation of smarter self-decision making CAR T-cells.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Oxygen/metabolism , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , T-Lymphocytes, Cytotoxic/physiology , Antigens, Neoplasm/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Genetic Engineering , Humans , Lymphocyte Activation , Neoplasms/immunology , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Cytotoxic/transplantation , Tumor Microenvironment
2.
Elife ; 62017 01 30.
Article in English | MEDLINE | ID: mdl-28134617

ABSTRACT

A large number of drugs can induce prolongation of cardiac repolarization and life-threatening cardiac arrhythmias. The prediction of this side effect is however challenging as it usually develops in some genetically predisposed individuals with normal cardiac repolarization at baseline. Here, we describe a platform based on a genetically diverse panel of induced pluripotent stem cells (iPSCs) that reproduces susceptibility to develop a cardiotoxic drug response. We generated iPSC-derived cardiomyocytes from patients presenting in vivo with extremely low or high changes in cardiac repolarization in response to a pharmacological challenge with sotalol. In vitro, the responses to sotalol were highly variable but strongly correlated to the inter-individual differences observed in vivo. Transcriptomic profiling identified dysregulation of genes (DLG2, KCNE4, PTRF, HTR2C, CAMKV) involved in downstream regulation of cardiac repolarization machinery as underlying high sensitivity to sotalol. Our findings offer novel insights for the development of iPSC-based screening assays for testing individual drug reactions.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Cardiotoxins/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Mass Screening/methods , Anti-Arrhythmia Agents/metabolism , Gene Expression Profiling , Humans , Models, Biological , Research Subjects
3.
PLoS One ; 11(3): e0149291, 2016.
Article in English | MEDLINE | ID: mdl-26938212

ABSTRACT

Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.


Subject(s)
Cellular Reprogramming/genetics , Embryonic Stem Cells/cytology , Genetic Heterogeneity , Graft Survival , Hematopoiesis/genetics , Induced Pluripotent Stem Cells/cytology , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Line , Cell Lineage/genetics , Chimerism , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/transplantation , Gene Expression , Genetic Vectors , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Lentivirus/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Retroviridae/genetics , Tissue Donors , Transcription Factors/genetics , Transcription Factors/metabolism , Transplantation, Heterologous
4.
Stem Cells Dev ; 23(24): 2983-95, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-24955741

ABSTRACT

During human embryonic stem cell (ESC) hematopoietic differentiation, the description of the initial steps of lymphopoiesis remains elusive. Using a two-step culture procedure, we identified two original populations of ESC-derived hematopoietic progenitor cells (HPCs) with CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) phenotypes. Bulk cultures and limiting dilution assays, culture with MS5 cells in the presence of Notch ligand Delta-like-1 (DL-1), and ex vivo colonization tests using fetal thymic organ cultures showed that although CD34(+)CD45RA(+)CD7(-) HPCs could generate cells of the three lymphoid lineages, their potential was skewed toward the B cell lineages. In contrast, CD34(+)CD45RA(+)CD7(+) HPCs predominantly exhibited a T/natural killer (NK) cell differentiation potential. Furthermore these cells could differentiate equivalently into cells of the granulo-macrophagic lineage and dendritic cells and lacked erythroid potential. Expression profiling of 18 markers by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs express genes of the lymphoid specification and that CD34(+)CD45RA(+)CD7(-) cells express B-cell-associated genes, while CD34(+)CD45RA(+)CD7(+) HPCs display a T-cell molecular profile. Altogether, these findings indicate that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs correspond to candidate multipotent early lymphoid progenitors polarized toward either the B or T/NK lineage, respectively. This work should improve our understanding of the early steps of lymphopoiesis from pluripotent stem cells and pave the way for the production of lymphocytes for cell-based immunotherapy and lymphoid development studies.


Subject(s)
Embryonic Stem Cells/cytology , Hematopoiesis , Lymphoid Progenitor Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Calcium-Binding Proteins , Cell Line , Cell Lineage , Cells, Cultured , Embryonic Stem Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymphoid Progenitor Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Pluripotent Stem Cells/metabolism
5.
Exp Hematol ; 41(4): 335-45.e3, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23287417

ABSTRACT

The occurrence of T315I mutation during the course of targeted therapies of chronic myeloid leukemia is a major concern because it confers resistance to all currently approved tyrosine kinase inhibitors. The exact phenotype of the hematopoietic stem cell and the hierarchical level of the occurrence of this mutation in leukemic hematopoiesis has not been determined. To study the effects of T315I-mutated breakpoint cluster region-abelson (BCR-ABL) in a primitive hematopoietic stem cell, we have used the murine embryonic stem cell (mESC)-derived hematopoiesis model. Native and T315I-mutated BCR-ABL were introduced retrovirally in mESC-derived embryonic bodies followed by induction of hematopoiesis. In several experiments, T315I-mutated and nonmutated BCR-ABL-transduced embryonic bodies rapidly generated hematopoietic cells on OP-9 feeders, with evidence of hematopoietic stem cell markers. After injection into NOD/SCID mice, these cells induced myeloid and lymphoid leukemias, whereas transplantation of control (nontransduced) hematopoietic cells failed to produce any hematopoietic reconstitution in vivo. Moreover, the expression of native and T315I-mutated BCR-ABL conferred to mESC-derived hematopoietic cells a self-renewal capacity demonstrated by the generation of leukemias after secondary transplantations. Secondary leukemias were more aggressive with evidence of extramedullary tumors. The expression of stem cell regulator Musashi-2 was found to be increased in bone marrow of leukemic mice. These data show that T315I-mutated BCR-ABL is functional at the stem cell level, conferring to mESC-derived leukemic cells a long-term hematopoietic repopulation ability. This model could be of interest to test the efficiency of drugs at the stem cell level in leukemias with T315I mutation.


Subject(s)
Embryonic Stem Cells/metabolism , Fusion Proteins, bcr-abl/genetics , Hematopoiesis/genetics , Mutation , Amino Acid Substitution , Animals , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Cell Proliferation , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Embryoid Bodies/transplantation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/transplantation , Feeder Cells/cytology , Flow Cytometry , Fusion Proteins, bcr-abl/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Inbred NOD , Mice, SCID , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Retroviridae/genetics , Stem Cell Transplantation/methods , Time Factors , Transduction, Genetic
6.
Cancer Res ; 72(21): 5505-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22962269

ABSTRACT

A number of solute carrier (SLC) proteins are subject to changes in expression and activity during carcinogenesis. Whether these changes play a role in carcinogenesis is unclear, except for some nutrients and ion carriers whose deregulation ensures the necessary reprogramming of energy metabolism in cancer cells. In this study, we investigated the functional role in tumor progression of the sodium/iodide symporter (NIS; aka SLC5A5), which is upregulated and mislocalized in many human carcinomas. Notably, we found that NIS enhanced cell migration and invasion without ion transport being involved. These functions were mediated by NIS binding to leukemia-associated RhoA guanine exchange factor, a Rho guanine exchange factor that activates the small GTPase RhoA. Sequestering NIS in intracellular organelles or impairing its targeting to the cell surface (as observed in many cancers) led to a further increase in cell motility and invasiveness. In sum, our results established NIS as a carrier protein that interacts with a major cell signaling hub to facilitate tumor cell locomotion and invasion.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Invasiveness/pathology , Signal Transduction/physiology , Symporters/metabolism , Cell Line, Tumor , Cell Movement/physiology , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rho Guanine Nucleotide Exchange Factors , Transduction, Genetic , Two-Hybrid System Techniques
7.
PLoS One ; 7(6): e39249, 2012.
Article in English | MEDLINE | ID: mdl-22745723

ABSTRACT

BACKGROUND: Human cyclin A2 is a key regulator of S phase progression and entry into mitosis. Alternative splice variants of the G1 and mitotic cyclins have been shown to interfere with full-length cyclin functions to modulate cell cycle progression and are therefore likely to play a role in differentiation or oncogenesis. The alternative splicing of human cyclin A2 has not yet been studied. METHODOLOGY/PRINCIPAL FINDINGS: Sequence-specific primers were designed to amplify various exon-intron regions of cyclin A2 mRNA in cell lines and human tissues. Intron retaining PCR products were cloned and sequenced and then overexpressed in HeLa cells. The subcellular localization of the splice variants was studied using confocal and time-lapse microscopy, and their impact on the cell cycle by flow cytometry, immunoblotting and histone H1 kinase activity. We found a splice variant of cyclin A2 mRNA called A2V6 that partly retains Intron 6. The gene expression pattern of A2V6 mRNA in human tissues was noticeably different from that of wild-type cyclin A2 (A2WT) mRNA. It was lower in proliferating fetal tissues and stronger in some differentiated adult tissues, especially, heart. In transfected HeLa cells, A2V6 localized exclusively in the cytoplasm whereas A2WT accumulated in the nucleus. We show that A2V6 induced a clear G1/S cell cycle arrest associated with a p21 and p27 upregulation and an inhibition of retinoblastoma protein phosphorylation. Like A2WT, A2V6 bound CDK2, but the A2V6/CDK2 complex did not phosphorylate histone H1. CONCLUSION/SIGNIFICANCE: This study has revealed that some highly differentiated human tissues express an intron-retaining cyclin A2 mRNA that induced a G1/S block in vitro. Contrary to full-length cyclin A2, which regulates cell proliferation, the A2V6 splice variant might play a role in regulating nondividing cell states such as terminal differentiation or senescence.


Subject(s)
Cell Cycle/physiology , Cyclin A2/metabolism , Introns/genetics , Protein Isoforms/metabolism , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cyclin A2/genetics , Flow Cytometry , G1 Phase/genetics , HeLa Cells , Humans , Protein Isoforms/genetics , S Phase/genetics
8.
PLoS One ; 7(4): e30743, 2012.
Article in English | MEDLINE | ID: mdl-22514597

ABSTRACT

Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However, research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (ESC). We report here on the use of infrared microspectroscopy to follow the spectral modification of somatic cells during the reprogramming process. We show that induced pluripotent stem cells (iPSC) adopt a chemical composition leading to a spectral signature indistinguishable from that of embryonic stem cells (ESC) and entirely different from that of the original somatic cells. Similarly, this technique allows a distinction to be made between partially and fully reprogrammed cells. We conclude that infrared microspectroscopy signature is a novel methodology to evaluate induced pluripotency and can be added to the tests currently used for this purpose.


Subject(s)
Cellular Reprogramming/physiology , Animals , Cellular Reprogramming/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Spectroscopy, Fourier Transform Infrared
9.
Hum Gene Ther ; 19(9): 915-26, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18759560

ABSTRACT

The hepatocarcinoma-intestine-pancreas (HIP) gene, also called pancreatitis-associated protein-1 (PAP1) or Reg IIIalpha, is activated in most human hepatocellular carcinomas (HCCs) but not in normal liver, which suggests that HIP regulatory sequence could be used as efficient liver tumor-specific promoters to express a therapeutic polynucleotide in liver cancer. The sodium iodide symporter (NIS), which has recognized therapeutic and reporter gene properties, is appropriate to evaluate the transcriptional strength and specificity of the HIP promoter in HCC. For this purpose, we constructed a recombinant rat HIP-NIS adenoviral vector (AdrHIP-NIS), and evaluated its performance as a mediator of selective radioiodide uptake in tumor hepatocytes. Western blot, immunofluorescence, and iodide uptake assays were performed in AdrHIP-NIS-infected primary hepatocytes and transformed hepatic and nonhepatic cells. Nuclear imaging, tissue counting and immunohistochemistry were performed in normal and HCC-bearing Wistar rats infected with AdrHIP-NIS intratumorally or via the hepatic artery. In AdrHIP-NIS-infected transformed hepatic cells, functional NIS was strongly expressed, as in cells infected with a cytomegalovirus-NIS vector. No NIS expression was found in AdrHIP-NIS-infected normal hepatocytes or transformed nonhepatic cells. In rats bearing multinodular HCC, AdrHIP-NIS triggered functional NIS expression that was preferential in tumor hepatocytes. Administration of 18 mCi of (131)I resulted in the destruction of AdrHIP-NIS-injected nodules. This study has identified the rHIP regulatory sequence as a potent liver tumor-specific promoter for the transfer of therapeutic genes, and AdrHIP-NIS-mediated (131)I therapy as a valuable option for the treatment of multinodular HCC.


Subject(s)
Antigens, Neoplasm/genetics , Biomarkers, Tumor/genetics , Lectins, C-Type/genetics , Liver Neoplasms, Experimental/radiotherapy , Liver Neoplasms, Experimental/therapy , Adenoviridae/genetics , Animals , Base Sequence , Cell Line , Cell Line, Tumor , DNA, Recombinant/genetics , Dogs , Female , Gene Expression , Gene Transfer Techniques , Genetic Vectors , Humans , Iodine Radioisotopes/administration & dosage , Iodine Radioisotopes/therapeutic use , Liver Neoplasms, Experimental/genetics , Male , Pancreatitis-Associated Proteins , Promoter Regions, Genetic , Rats , Rats, Wistar , Symporters/genetics
10.
Gastroenterology ; 132(4): 1495-503, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17408651

ABSTRACT

BACKGROUND & AIMS: The ability of thyroid cells to take up iodide, which enables (131)I radiotherapy for thyroid cancer, is due to the expression of the sodium iodide symporter at their plasma membrane. Expression of this symporter has been found in some nonthyroid cancers. However, it is mostly accumulated in the cytoplasm, and its functionality has not been demonstrated. We have investigated sodium iodide symporter expression and functionality in human liver cancer, and in a diethylnitrosamine induced Wistar rat model of primary liver cancer at different stages of carcinogenesis. METHODS: Sodium iodide symporter mRNA and protein were studied in tissues from patients with hepatocellular- or cholangio-carcinomas using reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemistry. We studied the dynamics of hepatic iodine uptake in the animal model using nuclear imaging. RESULTS: Sodium iodide symporter expression showed up in all 20 cholangiocarcinomas, but in only 2 of the 26 hepatocellular carcinomas, investigated. It was also found in normal bile duct cells and in the ductular reaction present in cirrhotic tissues. It was located at the plasma membrane in 10 of 20 cholangiocarcinoma. In rat liver cancer, a functional sodium iodide symporter expression was triggered as from the early preneoplastic steps, and was amplified during clonal tumor cell expansion, allowing complete tumor suppression after (131)I radiotherapy. CONCLUSIONS: A significant proportion of human cholangiocarcinomas expresses membrane sodium iodide symporter, which may permit radioiodine therapy. Our data also suggest that (131)I acts on a crucial target for liver cancer development.


Subject(s)
Bile Ducts, Intrahepatic , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , RNA, Messenger/genetics , Symporters/genetics , Animals , Autoradiography , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/metabolism , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/metabolism , Disease Progression , Humans , Immunoblotting , Immunohistochemistry , In Situ Nick-End Labeling , Iodine , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Liver Neoplasms, Experimental/diagnosis , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Male , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Symporters/biosynthesis , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...