ABSTRACT
Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 µg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 µM), samarangenin B (71%, 20 µM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 µM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 µg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 µg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 µg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 µg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.
Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Biofilms , Cysteine Endopeptidases , Gingipain Cysteine Endopeptidases , Plant Extracts , Plumbaginaceae , Porphyromonas gingivalis , Virulence Factors , Biofilms/drug effects , Porphyromonas gingivalis/drug effects , Humans , Adhesins, Bacterial/drug effects , Bacterial Adhesion/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plumbaginaceae/chemistry , Plant Roots/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/isolation & purification , KB Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purificationABSTRACT
Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named "baicuru" (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.
Subject(s)
Plumbaginaceae , Proanthocyanidins , Humans , Animals , Swine , Gingipain Cysteine Endopeptidases , Porphyromonas gingivalis , Adhesins, Bacterial , Proanthocyanidins/pharmacology , Cysteine Endopeptidases , Plumbaginaceae/chemistryABSTRACT
BACKGROUND: Herpes simplex type 1 (HSV-1) is widely distributed throughout the world's population. The virus spreads through direct contact with an infected individual. After primary infection, the virus remains in a latent state, and the recurrence of herpetic lesions is common. Standard treatment is performed with nucleoside analogues, but the selection of resistant strains have occurred, thus requiring the continual search for new antiviral agents. Plant extracts, fractions, and isolated compounds are a good source for studying possible antiviral compounds. HYPOTHESIS: Among plants with antiviral activity, the crude extract of aerial parts of Tanacetum parthenium (L.) Sch.Bip. (Asteraceae) have previously shown to inhibit HSV-1 infection in vitro. METHODS: The present study investigated the chemical composition of a crude hydroethanolic extract (CHE) of T. parthenium, and in vivo safety and therapeutic efficacy against HSV-1 infection. RESULTS: Liquid chromatography-mass spectrometry showed that the CHE was composed of phenolic acids (chlorogenic acids) and sesquiterpene lactones (parthenolide). Acute and subchronic toxicity and genotoxicity tests in vivo showed that oral CHE administration did not result in signs of toxicity, with no genotoxic potential. The CHE was also safe for topical administration, in which no irritation of the epidermis was observed in treated animals. Tests of topical and oral therapeutic efficacy showed that the CHE was effective against HSV-1 infection. Topical administration was the most effective, the results for which were comparable to acyclovir. CONCLUSION: These findings indicate that the CHE from aerial parts of Tanacetum parthenium has in vivo anti-HSV-1 activity and is safe for oral and topical application.