Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961922

ABSTRACT

Life cycle assessment is a methodology to assess environmental impacts associated with a product or system/process by accounting resource requirements and emissions over its life cycle. The life cycle consists of four stages: material production, manufacturing, use, and end-of-life. This study highlights the need to conduct life cycle assessment (LCA) early in the new product development process, as a means to assess and evaluate the environmental impacts of (nano)enhanced carbon fibre-reinforced polymer (CFRP) prototypes over their entire life cycle. These prototypes, namely SleekFast sailing boat and handbrake lever, were manufactured by functionalized carbon fibre fabric and modified epoxy resin with multi-walled carbon nanotubes (MWCNTs). The environmental impacts of both have been assessed via LCA with a functional unit of '1 product piece'. Climate change has been selected as the key impact indicator for hotspot identification (kg CO2 eq). Significant focus has been given to the end-of-life phase by assessing different recycling scenarios. In addition, the respective life cycle inventories (LCIs) are provided, enabling the identification of resource hot spots and quantifying the environmental benefits of end-of-life options.

2.
Ground Water ; 40(5): 500-8, 2002.
Article in English | MEDLINE | ID: mdl-12236263

ABSTRACT

Complex aquifer systems are often modeled with quasi-three-dimensional models, which consider two-dimensional horizontal flow in the aquifers and one-dimensional vertical flow through aquitards. When the aquifer system consists of a phreatic aquifer and one or more semiconfined aquifers connected by aquitards, the discrete model consists of a nonlinear system of algebraic equations, because the transmissivity of the phreatic aquifer depends on the phreatic head. If the water extraction is very high, the phreatic aquifer can be depleted and the equations of the model must be modified accordingly. There are not simple and general criteria to state if the phreatic aquifer is depleted before solving the system of equations. Therefore, the iterative procedures (e.g., relaxation methods), used to find the solution to the forward problem, must handle these particular conditions and can suffer several problems of convergence. These problems can be caused by the choice of the initial head values or of the relaxation coefficient of the iterative algorithms; however, they can also be caused by the nonexistence or nonuniqueness of the solution to the system of nonlinear equations. The study of existence and uniqueness of the general problem is very difficult and, therefore, we consider a simplified problem, for which the discrete model can be handled analytically. The results of the numerical experiments show that the solution to the forward problem can be nonunique. Only for some cases it is possible to invoke physical arguments to eliminate tentative solutions.


Subject(s)
Fresh Water/chemistry , Models, Theoretical , Water Movements , Computer Simulation , Italy , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...