Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Med ; 128(10): 1225-1235, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37620674

ABSTRACT

PURPOSE: Four-dimensional time-resolved phase-contrast cardiovascular magnetic resonance imaging (4D flow MRI) enables blood flow quantification in multiple vessels, which is crucial for patients with congenital heart disease (CHD). We investigated net flow volumes in the ascending aorta and pulmonary arteries by four different postprocessing software packages for 4D flow MRI in comparison with 2D cine phase-contrast measurements (2D PC). MATERIAL AND METHODS: 4D flow and 2D PC datasets of 47 patients with biventricular CHD (median age 16, range 0.6-52 years) were acquired at 1.5 T. Net flow volumes in the ascending aorta, the main, right, and left pulmonary arteries were measured using four different postprocessing software applications and compared to offset-corrected 2D PC data. Reliability of 4D flow postprocessing software was assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Linear regression of internal flow controls was calculated. Interobserver reproducibility was evaluated in 25 patients. RESULTS: Correlation and agreement of flow volumes were very good for all software compared to 2D PC (ICC ≥ 0.94; bias ≤ 5%). Internal controls were excellent for 2D PC (r ≥ 0.95, p < 0.001) and 4D flow (r ≥ 0.94, p < 0.001) without significant difference of correlation coefficients between methods. Interobserver reliability was good for all vendors (ICC ≥ 0.94, agreement bias < 8%). CONCLUSION: Haemodynamic information from 4D flow in the large thoracic arteries assessed by four commercially available postprocessing applications matches routinely performed 2D PC values. Therefore, we consider 4D flow MRI-derived data ready for clinical use in patients with CHD.


Subject(s)
Heart Defects, Congenital , Magnetic Resonance Imaging , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Reproducibility of Results , Blood Flow Velocity/physiology , Aorta/diagnostic imaging , Software , Imaging, Three-Dimensional/methods
2.
Pediatr Cardiol ; 42(7): 1625-1634, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34313807

ABSTRACT

Cardiac MR (CMR) is a standard modality for assessing ventricular function of single ventricles. CMR feature-tracking (CMR-FT) is a novel application enabling strain measurement on cine MR images and is used in patients with congenital heart diseases. We sought to assess the feasibility of CMR-FT in Fontan patients and analyze the correlation between CMR-FT strain values and conventional CMR volumetric parameters, clinical findings, and biomarkers. Global circumferential (GCS) and longitudinal (GLS) strain were retrospectively measured by CMR-FT on Steady-State Free Precession cine images. Data regarding post-operative course at Fontan operation, and medication, exercise capacity, invasive hemodynamics, and blood biomarkers at a time interval ± 6 months from CMR were collected. Forty-seven patients underwent CMR 11 ± 6 years after the Fontan operation; age at CMR was 15 ± 7 years. End-diastolic volume (EDV) of the SV was 93 ± 37 ml/m2, end-systolic volume (ESV) was 46 ± 23 ml/m2, and ejection fraction (EF) was 51 ± 11%. Twenty (42%) patients had a single right ventricle (SRV). In single left ventricle (SLV), GCS was higher (p < 0.001), but GLS was lower (p = 0.04) than in SRV. GCS correlated positively with EDV (p = 0.005), ESV (p < 0.001), and EF (p ≤ 0.0001). GLS correlated positively with EF (p = 0.002), but not with ventricular volumes. Impaired GCS correlated with decreased ventricular function (p = 0.03) and atrioventricular valve regurgitation (p = 0.04) at echocardiography, direct atriopulmonary connection (p = 0.02), post-operative complications (p = 0.05), and presence of a rudimentary ventricle (p = 0.01). A reduced GCS was associated with increased NT-pro-BNP (p = 0.05). Myocardial deformation can be measured by CMR-FT in Fontan patients. SLVs have higher GCS, but lower GLS than SRVs. GCS correlates with ventricular volumes and EF, whereas GLS correlates with EF only. Myocardial deformation shows a relationship with several clinical parameters and NT-pro-BNP.


Subject(s)
Magnetic Resonance Imaging, Cine , Myocardium , Biomarkers , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Ventricular Function, Left
3.
J Magn Reson Imaging ; 51(3): 897-903, 2020 03.
Article in English | MEDLINE | ID: mdl-31507010

ABSTRACT

BACKGROUND: T1 mapping is useful to quantify diffuse myocardial processes such as fibrosis, edema, storage disorders, or hemochromatosis. Normal pediatric myocardial T1 values are scarce using modified Look-Locker inversion recovery (MOLLI) sequences and unavailable using Smart1Map, a single-point saturation recovery sequence that measures true T1 . PURPOSE/HYPOTHESIS: To establish normal pediatric myocardial T1 values by Smart1Map and to compare them with T1 by MOLLI. STUDY TYPE: Prospective cohort study. SUBJECTS: Thirty-four children and adolescents aged 8-18 years (14 males) without cardiovascular or inflammatory diseases. FIELD STRENGTH/SEQUENCES: 1.5T, MOLLI, Smart1Map. ASSESSMENT: Mean T1 values of the left ventricular myocardium, the interventricular septum, and the blood pool were measured with MOLLI and Smart1Map in basal, mid-ventricular, and apical short axis slices. STATISTICAL TESTS: T1 values were compared between locations and methods by paired samples t-tests, Wilcoxon signed ranks test, repeated-measures analysis of variance (ANOVA), or Friedman's test. Pearson's correlation coefficient was calculated. For interobserver variability, intraclass correlation coefficients and coefficients of variation were calculated, and Bland-Altman analyses were performed. RESULTS: T1 values were longer by Smart1Map than by MOLLI in all measured locations (myocardium: 1191-1221 vs. 990-1042 msec; all P < 0.001). T1 in basal vs. mid-ventricular slices differed both by MOLLI and by Smart1Map for myocardium and for blood (all P < 0.001). Myocardial T1 did not correlate with age, heart rate, right or left ventricular ejection fraction (all P > 0.05) by either method. Septal vs. total myocardial T1 values in each slice did not differ by MOLLI (basal P = 0.371; mid-ventricular P = 0.08; apical P = 0.378) nor by Smart1Map (basal P = 0.056; mid-ventricular P = 0.918; apical P = 0. 392), after artifacts had been carefully excluded. DATA CONCLUSION: We established pediatric normal native T1 values using the Smart1Map sequence and compared the results with T1 mapping with MOLLI. Septal T1 values did not differ from total myocardial T1 values in each of the myocardial slices. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:897-903.


Subject(s)
Magnetic Resonance Imaging , Ventricular Function, Left , Adolescent , Child , Humans , Male , Myocardium , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Stroke Volume
4.
Front Cardiovasc Med ; 6: 39, 2019.
Article in English | MEDLINE | ID: mdl-31024933

ABSTRACT

Introduction: Adult survivors of the atrial switch operation for transposition of the great arteries present with a systemic morphologic right ventricle and a subpulmonary morphologic left ventricle. This physiology can be considered a model for the effects of long-term right ventricular pressure overload and of decreased left ventricular afterload. We aimed to determine the impact of these chronically altered loading conditions on myocardial deformation of the ventricles. Materials and methods: Two-dimensional steady state free precession cine images of 29 patients after atrial repair (age 29 ± 7 years) and 19 controls (24 ± 10 years; n.s.) were post-processed with feature tracking software (TomTec 2D CPA). Volumes, ejection fractions, global and free wall longitudinal and circumferential strains of both ventricles were compared between both groups. Results: Systemic right ventricular global longitudinal strain was decreased in patients compared to controls (-12.9 ± 3.3% vs. -18.9 ± 4.6%, p < 0.001), while right ventricular circumferential strain was unchanged (-15.8 ± 3.4% vs. -15.1 ± 5%; n.s.). Left ventricular longitudinal strain was similar in both groups (-17 ± 5.6% vs. -17.5 ± 4.6%; n.s.), but global left ventricular circumferential strain was lower in patients (-20.7 ± 4.1% vs. -27.3 ± 4.5%, p < 0.001). The systemic right ventricle, compared to the systemic left ventricle, showed decreased global longitudinal (p < 0.001) and circumferential strain (p < 0.001). The subpulmonary left ventricle, compared to the subpulmonary right ventricle, demonstrated similar longitudinal (p = 0.223) but higher circumferential strain (p < 0.001). Conclusions: In patients after atrial switch repair for transposition of the great arteries, the systemic right ventricle shows poor longitudinal strain, but maintains normal right ventricular circumferential strain. The left ventricle shows higher circumferential strain than the right ventricle, in both systemic and subpulmonary positions.

SELECTION OF CITATIONS
SEARCH DETAIL
...