Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
HardwareX ; 15: e00451, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37497345

ABSTRACT

A low-cost Digital Signal Processor (DSP) unit for advanced Scanning Probe Microscopy measurements is presented. It is based on Red Pitaya board and custom built electronic boards with additional high bit depth AD and DA converters. By providing all the necessary information (position and time) with each data point collected it can be used for any scan path, using either existing libraries for scan path generation or creating adaptive scan paths using Lua scripting interface. The DSP is also capable of performing statistical calculations, that can be used for decision making during scan or for the scan path optimisation on the DSP level.

2.
Sci Rep ; 10(1): 15294, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943693

ABSTRACT

Surface roughness plays an important role in various fields of nanoscience and nanotechnology. However, the present practices in roughness measurements, typically based on some Atomic Force Microscopy measurements for nanometric roughness or optical or mechanical profilometry for larger scale roughness significantly bias the results. Such biased values are present in nearly all the papers dealing with surface parameters, in the areas of nanotechnology, thin films or material science. Surface roughness, most typically root mean square value of irregularities Sq is often used parameter that is used to control the technologies or to link the surface properties with other material functionality. The error in estimated values depends on the ratio between scan size and roughness correlation length and on the way how the data are processed and can easily be larger than 10% without us noting anything suspicious. Here we present a survey of how large is the problem, detailed analysis of its nature and suggest methods to predict the error in roughness measurements and possibly to correct them. We also present a guidance for choosing suitable scan area during the measurement.

3.
Sensors (Basel) ; 14(1): 877-86, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24451463

ABSTRACT

We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) µm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment.

4.
Nanoscale Res Lett ; 7(1): 332, 2012.
Article in English | MEDLINE | ID: mdl-22720756

ABSTRACT

ABSTRACT: We present a novel system for large-area scanning probe microscopy (SPM) measurements based on minimum counter-force linear guidance mechanisms, voice coils, interferometers and fuzzy logic-based feedback loop electronics. It is shown that voice coil-based actuation combined with interferometry can be a good alternative to piezoceramic positioning systems, providing fast and still sufficient, precise displacements which range from nanometers to millimeters. Using fuzzy logic feedback control, it can be actuated even with only a few low-cost components, like a cheap single-chip microcontroller. As the final positioning resolution can be made independent on the electronics output resolution, the system can reach high positioning resolution even on very large scan sizes. This is a key prerequisite for devel.

5.
Nanoscale Res Lett ; 7: 213, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22587490

ABSTRACT

Long-range scanning probe microscope (SPM) measurements are usually extremely time consuming as many data need to be collected, and the microscope probe speed is limited. In this article, we present an adaptive measurement method for a large-area SPM. In contrast to the typically used line by line scanning with constant pixel spacing, we use an algorithm based on several levels of local refinement in order to minimize the amount of information that would be useless in the data processing phase. The data obtained from the measurement are in general formed by xyz data sets that are triangulated back with a desired local resolution. This enables storing more relevant information from a single measurement as the data are interpolated and regularized in the data processing phase instead of during the measurement. In this article, we also discuss the influence of thermal drifts on the measured data and compare the presented algorithm to the standard matrix-based measuring approach.

6.
Nanoscale Res Lett ; 6(1): 514, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21878120

ABSTRACT

Nanoparticles are often measured using atomic force microscopy or other scanning probe microscopy methods. For isolated nanoparticles on flat substrates, this is a relatively easy task. However, in real situations, we often need to analyze nanoparticles on rough substrates or nanoparticles that are not isolated. In this article, we present a simple model for realistic simulations of nanoparticle deposition and we employ this model for modeling nanoparticles on rough substrates. Different modeling conditions (coverage, relaxation after deposition) and convolution with different tip shapes are used to obtain a wide spectrum of virtual AFM nanoparticle images similar to those known from practice. Statistical parameters of nanoparticles are then analyzed using different data processing algorithms in order to show their systematic errors and to estimate uncertainties for atomic force microscopy analysis of nanoparticles under non-ideal conditions. It is shown that the elimination of user influence on the data processing algorithm is a key step for obtaining accurate results while analyzing nanoparticles measured in non-ideal conditions.

7.
Ultramicroscopy ; 108(7): 671-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18068903

ABSTRACT

In this article results of a comparison of two NSOM probe characterization methods are presented. Scanning electron microscopy analysis combined with electromagnetic field modeling using the finite difference in time domain method are compared with measured far-field radiation diagrams of NSOM probes. It is shown that measurement of far-field radiation diagrams can be an efficient tool for daily checking of the NSOM probes quality. Moreover, it is shown that the inner probe geometry has large influence on the directional radiation of an NSOM probe and the far-field radiation diagram can be used as a simple method to distinguish between different probe geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...