Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Vopr Virusol ; 68(4): 315-326, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-38156588

ABSTRACT

INTRODUCTION: Hepatitis C is a liver disease with high chronicity, the cause of cirrhosis and hepatocarcinoma. The main obstacle to controlling hepatitis C is the lack of vaccines. The aim of the work was to compare the immunogenic activity of nonstructural recombinant proteins NS3, NS4 and NS5B of hepatitis C virus (HCV) as components of a subunit candidate vaccine and to analyze the adjuvant properties of two available commercial drugs, polymuramil and pyrogenalum. MATERIALS AND METHODS: BALB/c, DBA/2J and C57BL/6 mice were immunized with nonstructural proteins without adjuvants or with polymuramyl (NOD1 and NOD2 agonist) and pyrogenalum (TLR-4 agonist). The activity of antibodies was determined in ELISA, the cellular response - by antigen-specific lymphocyte proliferation and by production of IFN-γ in vitro. RESULTS: Recombinant proteins showed different immunogenicity. NS4 induced antibodies more efficiently than NS3 and NS5B. Significant differences were found in the immune response of three inbred lines mice: the level of IFN-γ in BALB/c and DBA/2J mice induced by NS5B protein was 30 times higher than in C57Bl/6 mice. In contrast, the induction of antibodies in BALB/c mice was lower than in C57Bl/6 and DBA/2J. Polymuramil did not increase the humoral response to NS5B and enhanced the cellular response only in C57BL/6 mice. The combined use of polymuramil with pyrogenalum significantly increased both the humoral and cellular response of mice to all recombinant HCV proteins. CONCLUSION: Different immunogenic properties and different functions of recombinant non-structural HCV proteins indicate the feasibility of their combined inclusion in subunit vaccines. It was established for the first time that immunization with HCV proteins with a complex adjuvant (polymuramyl + pyrogenalum) has a synergistic effect, significantly exceeding the effect of each of them separately.


Subject(s)
Hepatitis C , Toll-Like Receptor 4 , Vaccines, DNA , Viral Hepatitis Vaccines , Animals , Mice , Adjuvants, Immunologic/pharmacology , Hepacivirus , Immunity, Cellular , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Recombinant Proteins , Toll-Like Receptor 4/agonists , Vaccines, DNA/pharmacology , Viral Hepatitis Vaccines/pharmacology , Viral Nonstructural Proteins
2.
Vopr Virusol ; 67(6): 516-526, 2023 02 07.
Article in Russian | MEDLINE | ID: mdl-37264841

ABSTRACT

INTRODUCTION: A vaccine against hepatitis C has not yet been developed. Recombinant proteins and plasmids encoding hepatitis C virus (HCV) proteins, the components of candidate vaccines, induce a weak immune response and require the use of adjuvants. The aim of the work was to study the adjuvant action of an aqueous solution of fullerene C60 during immunization of mice with HCV recombinant protein NS5B (rNS5B) that is an RNA-dependent RNA polymerase, or with NS5B-encoding pcNS5B plasmid. MATERIALS AND METHODS: An aqueous solution of dispersed fullerene (dnC60) was obtained by ultrafiltration. C57BL/6 mice were immunized with rNS5B subcutaneously, pcNS5B intramuscularly mixed with different doses of dnC60 three times, then the humoral and cellular response to HCV was evaluated. RESULTS: Mice immunization with rNS5B in a mixture with dnC60 at doses of 250 g/mouse significantly induced humoral response: a dose-dependent increase in IgG1 antibody titers was 720 times higher than in the absence of fullerene. There was no increase in the cellular response to rNS5B when administered with dnC60. The humoral response to DNA immunization was weak in mice of all groups receiving pcNS5B. The cellular response was suppressed when the plasmid was injected in a mixture with dnC60. CONCLUSIONS: Dispersed fullerene dnC60 is a promising adjuvant for increasing the immunostimulating activity of weakly immunogenic proteins including surface and other HCV proteins, important for a protective response. Further research is needed to enhance the ability of dnC60 to boost the cellular immune response to the components of the candidate vaccine.


Subject(s)
Fullerenes , Hepatitis C , Vaccines, DNA , Viral Hepatitis Vaccines , Mice , Animals , Hepacivirus , Fullerenes/pharmacology , Fullerenes/metabolism , Base Sequence , Amino Acids/genetics , Amino Acids/metabolism , Amino Acids/pharmacology , Mice, Inbred C57BL , Adjuvants, Immunologic/genetics , Immunity, Cellular , Recombinant Proteins/genetics , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/pharmacology , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/pharmacology
3.
Mol Biol ; 56(5): 629-637, 2022.
Article in English | MEDLINE | ID: mdl-36217338

ABSTRACT

Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017‒2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.

4.
Mol Biol (Mosk) ; 56(5): 687-696, 2022.
Article in Russian | MEDLINE | ID: mdl-36165010

ABSTRACT

Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017-2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.


Subject(s)
Neoplasms , Culture Media , Humans
5.
Sci Rep ; 8(1): 8078, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29799015

ABSTRACT

DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid ("surrogate challenge"). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199-220 and aa 528-543. Drug-resistance mutations disrupted the epitope at aa 205-220, while the CTL epitope at aa 202-210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.


Subject(s)
AIDS Vaccines , Drug Resistance, Viral , HIV Infections/therapy , HIV Reverse Transcriptase/immunology , Th2 Cells/immunology , Vaccination/methods , Vaccines, DNA , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Calibration , Cells, Cultured , Codon , Drug Delivery Systems , Drug Resistance, Viral/genetics , Drug Resistance, Viral/immunology , Epitopes/genetics , Epitopes/immunology , HIV Infections/immunology , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/immunology , HeLa Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Secondary/methods , Immunization, Secondary/standards , Immunogenicity, Vaccine/genetics , Mice , Mice, Inbred BALB C , Quality Improvement , Th2 Cells/metabolism , Vaccination/standards , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics
6.
Biochemistry (Mosc) ; 82(13): 1716-1743, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29523068

ABSTRACT

Highly active antiretroviral therapy (HAART) is one of the most effective means for fighting against HIV-infection. HAART primarily targets HIV-1 reverse transcriptase (RT), and 14 of 28 compounds approved by the FDA as anti-HIV drugs act on this enzyme. HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) hold a special place among HIV RT inhibitors owing to their high specificity and unique mode of action. Nonetheless, these drugs show a tendency to decrease their efficacy due to high HIV-1 variability and formation of resistant virus strains tolerant to clinically applied HIV NNRTIs. A combinatorial approach based on varying substituents within various fragments of the parent molecule that results in development of highly potent compounds is one of the approaches aimed at designing novel HIV NNRTIs. Generation of HIV NNRTIs based on pyrimidine derivatives explicitly exemplifies this approach, which is discussed in this review.


Subject(s)
Anti-HIV Agents/chemistry , Pyrimidines/therapeutic use , Reverse Transcriptase Inhibitors/chemistry , Anti-HIV Agents/pharmacology , Antiretroviral Therapy, Highly Active/methods , HIV Reverse Transcriptase , HIV-1/drug effects , Humans , Pyrimidines/chemistry , Reverse Transcriptase Inhibitors/therapeutic use
7.
Acta Naturae ; 7(3): 113-5, 2015.
Article in English | MEDLINE | ID: mdl-26483967

ABSTRACT

Several 5-aminouracil derivatives that have previously been shown to inhibit Mycobacterium tuberculosis growth at concentrations of 5-40 µg/mL are demonstrated to act also as noncompetitive non-nucleoside inhibitors of HIV-1 reverse transcriptase without causing toxicity in vitro (MT-4 cells) and ex vivo (human tonsillar tissue).

8.
Bioorg Khim ; 41(1): 44-53, 2015.
Article in Russian | MEDLINE | ID: mdl-26050471

ABSTRACT

Novel non-competitive inhibitors of HIV RT were synthesized by alkylation of 6-substituted purines with different 2-(chloroalkyl)-2-aryl-1,3-dioxolanes and related compounds. The structure-activity relationship within the synthesized compounds was studied.


Subject(s)
Anti-HIV Agents , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Purines , Reverse Transcriptase Inhibitors , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/chemistry , Humans , Purines/chemical synthesis , Purines/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...