Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000591

ABSTRACT

Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.e., it is a natural CB knockout), in this study we used it as a model to investigate the CB dependence of the effects of CIH on pulmonary vascular responses, including those mediated by NO, by comparing them with those previously described in the rat. We have analyzed pulmonary artery pressure (PAP), the hypoxic pulmonary vasoconstriction (HPV) response, endothelial function both in vivo and in vitro, and vascular remodeling (intima-media thickness, collagen fiber content, and vessel lumen area). We demonstrate that 30 days of the exposure of guinea pigs to CIH (FiO2, 5% for 40 s, 30 cycles/h) induces pulmonary artery remodeling but does not alter endothelial function or the contractile response to phenylephrine (PE) in these arteries. In contrast, CIH exposure increased the systemic arterial pressure and enhanced the contractile response to PE while decreasing endothelium-dependent vasorelaxation to carbachol in the aorta without causing its remodeling. We conclude that since all of these effects are independent of CB sensitization, there must be other oxygen sensors, beyond the CB, with the capacity to alter the autonomic control of the heart and vascular function and structure in CIH.


Subject(s)
Disease Models, Animal , Hypoxia , Pulmonary Artery , Sleep Apnea, Obstructive , Vasoconstriction , Animals , Guinea Pigs , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/metabolism , Hypoxia/physiopathology , Hypoxia/metabolism , Pulmonary Artery/physiopathology , Pulmonary Artery/metabolism , Male , Phenylephrine/pharmacology , Vascular Remodeling , Carotid Body/physiopathology , Carotid Body/metabolism , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Vasodilation
2.
Exp Physiol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867461

ABSTRACT

Duchenne muscular dystrophy (DMD) is characterised by respiratory muscle injury, inflammation, fibrosis and weakness, ultimately culminating in respiratory failure. The dystrophin-deficient mouse model of DMD (mdx) shows evidence of respiratory muscle remodelling and dysfunction contributing to impaired respiratory system performance. The antioxidant N-acetylcysteine (NAC) has been shown to exert anti-inflammatory and anti-fibrotic effects leading to improved respiratory muscle performance in a range of animal models of muscle dysfunction, including mdx mice, following short-term administration (2 weeks). We sought to build on previous work by exploring the effects of chronic NAC administration (3 months) on respiratory system performance in mdx mice. One-month-old male mdx mice were randomised to receive normal drinking water (n = 30) or 1% NAC in the drinking water (n = 30) for 3 months. At 4 months of age, we assessed breathing in conscious mice by plethysmography followed by ex vivo assessment of diaphragm force-generating capacity. Additionally, diaphragm histology was performed. In separate studies, in anaesthetised mice, respiratory electromyogram (EMG) activity and inspiratory pressure across a range of behaviours were determined, including assessment of peak inspiratory pressure-generating capacity. NAC treatment did not affect force-generating capacity of the mdx diaphragm. Collagen content and immune cell infiltration were unchanged in mdx + NAC compared with mdx diaphragms. Additionally, there was no significant effect of NAC on breathing, ventilatory responsiveness, inspiratory EMG activity or inspiratory pressure across the range of behaviours from basal conditions to peak system performance. We conclude that chronic NAC treatment has no apparent beneficial effects on respiratory system performance in the mdx mouse model of DMD suggesting limited potential of NAC treatment alone for human DMD.

3.
Adv Exp Med Biol ; 1427: 73-81, 2023.
Article in English | MEDLINE | ID: mdl-37322337

ABSTRACT

Obstructive sleep apnea (OSA) during pregnancy is characterized by episodes of intermittent hypoxia (IH) during sleep, resulting in adverse health outcomes for mother and offspring. Despite a prevalence of 8-20% in pregnant women, this disorder is often underdiagnosed.We have developed a murine model of gestational OSA to study IH effects on pregnant mothers, placentas, fetuses, and offspring. One group of pregnant rats was exposed to IH during the last 2 weeks of gestation (GIH). One day before the delivery date, a cesarean section was performed. Other group of pregnant rats was allowed to give birth at term to study offspring's evolution.Preliminary results showed no significant weight differences in mothers and fetuses. However, the weight of GIH male offspring was significantly lower than the controls at 14 days (p < 0.01). The morphological study of the placentas showed an increase in fetal capillary branching, expansion of maternal blood spaces, and number of cells of the external trophectoderm in the tissues from GIH-exposed mothers. Additionally, the placentas from the experimental males were enlarged (p < 0.05). Further studies are needed to follow the long-term evolution of these changes to relate the histological findings of the placentas with functional development of the offspring in adulthood.


Subject(s)
Placenta , Sleep Apnea, Obstructive , Mice , Animals , Pregnancy , Female , Rats , Male , Humans , Disease Models, Animal , Cesarean Section , Hypoxia , Fetal Development , Parturition
4.
Adv Exp Med Biol ; 1427: 89-97, 2023.
Article in English | MEDLINE | ID: mdl-37322339

ABSTRACT

This work analyzes the impact of two conditions, intermittent hypoxia exposure and high-fat diet in rats as models of sleep apnea. We studied the autonomic activity and histological structure of the rat jejunum and whether the overlapping of both conditions, as often observed in patients, induces more deleterious effects on the intestinal barrier. We found alterations in jejunum wall histology, predominantly in HF rats, based on increased crypt depth and submucosal thickness, as well as decreased muscularis propria thickness. These alterations were maintained with the IH and HF overlap. An increase in the number and size of goblet cells in the villi and crypts and the infiltration of eosinophils and lymphocytes in the lamina propria suggest an inflammatory status, confirmed by the increase in plasma CRP levels in all experimental groups. Regarding the CAs analysis, IH, alone or combined with HF, causes a preferential accumulation of NE in the catecholaminergic nerve fibers of the jejunum. In contrast, serotonin increases in all three experimental conditions, with the highest level in the HF group. It remains to be elucidated whether the alterations found in the present work could affect the permeability of the intestinal barrier, promoting sleep apnea-induced morbidities.


Subject(s)
Obesity , Sleep Apnea Syndromes , Mice , Rats , Animals , Disease Models, Animal , Obesity/complications , Diet, High-Fat/adverse effects , Hypoxia/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...