Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(6): 062501, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822069

ABSTRACT

New rotational bands built on the ν(h_{11/2}) configuration have been identified in ^{105}Pd. Two bands built on this configuration show the characteristics of transverse wobbling: the ΔI=1 transitions between them have a predominant E2 component and the wobbling energy decreases with increasing spin. The properties of the observed wobbling bands are in good agreement with theoretical results obtained using constrained triaxial covariant density functional theory and quantum particle rotor model calculations. This provides the first experimental evidence for transverse wobbling bands based on a one-neutron configuration, and also represents the first observation of wobbling motion in the A∼100 mass region.

2.
Phys Rev Lett ; 113(3): 032501, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25083635

ABSTRACT

Three sets of chiral doublet band structures have been identified in the ^{103}Rh nucleus. The properties of the observed chiral doublet bands are in good agreement with theoretical results obtained using constrained covariant density functional theory and particle rotor model calculations. Two of them belong to an identical configuration and provide the first experimental evidence for a novel type of multiple chiral doublets, where an "excited" chiral doublet of a configuration is seen together with the "yrast" one. This observation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsic excitation energy.

3.
Phys Rev Lett ; 104(21): 212504, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20867091

ABSTRACT

We report on the first successful extraction of a ß+ Gamow-Teller strength distribution from a radioactive isotope in an intermediate-energy charge-exchange experiment in inverse kinematics. The (7Li,7Be+γ(429 keV)) reaction at 100A MeV was used to measure Gamow-Teller transition strengths from 34P to states in 34Si. The results show that little mixing occurs between sd and pf shell configurations for the low-lying 0+ and 2+ states even though 34Si neighbors the island of inversion and low-lying 2ℏω intruder states exist. Shell-model calculations in the sdpf model space are consistent with these findings.

4.
Phys Rev Lett ; 99(16): 162501, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995242

ABSTRACT

Rare isotope beams of neutron-deficient 106,108,110Sn from the fragmentation of 124Xe were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,0(1)(+)-->2(1)(+)) values for 108Sn and 110Sn and the results obtained for the 106Sn show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z = 50 shell to the structure of low-energy excited states in this region.

5.
Phys Rev Lett ; 99(4): 042503, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678356

ABSTRACT

Transition rate measurements are reported for the 2(1)+ and 2(2)+ states in N=Z 64Ge. The experimental results are in excellent agreement with large-scale shell-model calculations applying the recently developed GXPF1A interactions. The measurement was done using the recoil distance method (RDM) and a unique combination of state-of-the-art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate-energy single-neutron knockout reaction. RDM studies of knockout and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for excited states in a wide range of nuclei.

6.
Phys Rev Lett ; 98(10): 102501, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17358525

ABSTRACT

A study of the nucleus 106Ag has revealed the presence of two strongly coupled negative-parity rotational bands up to the 19- and 20- states, respectively, which cross each other at spin I approximately 14. The data suggest that near the crossover point the bands correspond to different shapes, which is different to the behavior expected from a pair of chiral bands. Inspection of the properties of these bands indicates a triaxial and a planar nature of rotation for the two structures. Possible causes for this may be understood in terms of a shape transformation resulting from the large degree of gamma softness of 106Ag. These data, along with the systematics of the odd-odd structures in the mass 100 region, suggest that gamma softness has marked implications for the phenomenon of nuclear chirality.

7.
Phys Rev Lett ; 92(3): 032501, 2004 Jan 23.
Article in English | MEDLINE | ID: mdl-14753867

ABSTRACT

Chiral doublet bands based on the pi g(9/2) multiply sign in circle nu h(11/2) configuration that achieve degeneracy at spin I=17 in the odd-odd triaxial 104Rh nucleus have been observed. Experimental verification of the interpretation has been tested against specific fingerprints of chirality in the intrinsic system.

8.
Phys Rev Lett ; 91(13): 132501, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14525299

ABSTRACT

High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two DeltaI=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by DeltaI=1 and DeltaI=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and establishes the primarily geometric nature of this phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL
...