Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38923787

ABSTRACT

Monosodium methanearsonate (MSMA), a sodium salt of monomethylarsonic acid (MMA), is a selective contact herbicide used for the control of a broad spectrum of weeds. In water, MSMA dissociates to ions of sodium (Na+) and monomethylarsonate (MMA-) that is stable and does not transform abiotically. In soils characteristic of MSMA use, several simultaneous processes can occur: (1) microbial methylation of MMA to dimethylarsinic acid (DMA), (2) microbial demethylation of MMA to inorganic arsenic (iAs), (3) methylation of iAs to MMA, and (4) sorption and sequestration of MMA and its metabolites to soil minerals. Sequestered residues are residues that cannot be desorbed from soil in environmental conditions. Sequestration is rapid in the initial several days after MSMA application and continues at a progressively slower rate over time. Once sequestered, MMA and its metabolites are inaccessible to soil microorganisms and cannot be transformed. The rate and extent of the sorption and sequestration as well as the mobility of MMA and its metabolites depend on the local edaphic conditions. In typical MSMA use areas, the variability of the edaphic conditions is constrained. The goal of this research was to estimate the amount of iAs potentially added to drinking water as a result of the use of MSMA, with models and scenarios developed by the US Environmental Protection Agency for pesticide risk assessment. In this project, the estimated drinking water concentrations (EDWCs) for iAs were assessed as the average concentration in the reservoir over a 30-year simulation with annual applications of MSMA at maximum label rates. When the total area of suitable land was assumed to be treated, EDWCs ranged from <0.001 to 0.12 µg/L. When high estimates of actually treated acreage are considered, the EDWCs are below 0.06 µg/L across all scenarios. Integr Environ Assess Manag 2024;00:1-12. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
Integr Environ Assess Manag ; 18(3): 722-733, 2022 May.
Article in English | MEDLINE | ID: mdl-34331738

ABSTRACT

A modeling framework was created for the development of spatially explicit aquatic exposure models for any region or country of interest for chemicals disposed of down the drain. The framework relies on globally available data sets for river flow and population, and locally available data sets for wastewater treatment infrastructure and domestic water use, and leverages the iSTREEM® chemical routing algorithm. The framework was applied to China and Japan as case study countries. Spatially explicit population data were obtained from WorldPop. River flows covering the spatial extent of the two countries were derived from a high-resolution surface runoff gridded data set that was based on the Curve Number approach and combined with the hydrology network for catchments and rivers from HydroBASINS and HydroSHEDS data sets. Publicly available data from government sources were used for estimating per capita water use and wastewater treatment infrastructure. To demonstrate the framework, the China model was used to predict the levels of the antifungal agent climbazole in rivers across the country, and the Japan model was used to predict river concentrations of linear alkylbenzene sulfonate. For both chemicals, the comparison of measured to modeled values showed good agreement, using linear regression analysis (R2 ≥ 0.96). The framework presented in this study provides a systematic and robust approach to develop spatially resolved exposure models that can be extrapolated to any country or region, allowing more accurate risk assessment of chemicals disposed down the drain by leveraging concentration distributions generated by the model. Integr Environ Assess Manag 2022;18:722-733. © 2021 SETAC.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Japan , Risk Assessment , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis
3.
Environ Toxicol Chem ; 39(1): 210-219, 2020 01.
Article in English | MEDLINE | ID: mdl-31597209

ABSTRACT

Down-the-drain exposure models provide a valuable tool for estimating environmental exposure to substances which are treated and discharged by municipal wastewater-treatment plants (WWTPs). Microplastics may enter WWTPs from consumer activities and disposal. An exposure framework was developed using the iSTREEM® model, which estimates spatially explicit concentrations of substances in riverine systems across the United States and portions of Ontario, Canada. One hundred simulations covering a range of WWTP removal and instream loss rates (proxy for net sedimentation) were incorporated into a Web-based visualization tool for user exploration of relative concentrations across simulations. Surface water concentrations specific to user-supplied tonnage were examined via interactive heat maps and cumulative distributions. Exploring the spatial aspect of iSTREEM results showed that modeling 90% WWTP removal and no instream loss resulted in 8.5% of the mass entering WWTPs discharged to marine estuaries (7.4%) or Great Lakes (1.1%) environments, with the remainder of the mass discharged (1.5%) in inland sinks or exiting the United States via rivers. Modeling an example instream loss of k = 0.1 d-1 (i.e., half-life = 7 d), terminal river segments contained 3.3% of influent mass (2.3% marine estuaries, 1.0% Great Lakes). Varying instream loss rates had substantial impacts on the total mass exported. The Web-based tool provided a user-based mechanism to visualize relative freshwater concentrations of microplastics across a large geographic area by varying simplified particle fate assumptions. Environ Toxicol Chem 2019;39:210-219. © 2019 SETAC.


Subject(s)
Environmental Monitoring/methods , Microplastics/analysis , Rivers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Lakes/chemistry , Models, Theoretical , Ontario , United States
4.
Sci Total Environ ; 603-604: 445-452, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28641184

ABSTRACT

Sewer residence time (the amount of time a given volume of wastewater resides in a sewer system prior to treatment) can have a significant influence on predictions of environmental fate and transport of wastewater constituents and corresponding risk assessment. In this study, a geographic information systems-based approach for estimating the distribution of sewer residence times for the U.S. was developed using road networks as a spatial proxy for sewer networks. The suitability of the approach was evaluated using case study municipalities, and the approach was subsequently extrapolated to 3422 wastewater treatment facilities of varying size across the U.S. to estimate a national distribution of sewer residence times. The estimated national median residence time for the U.S. was 3.3h. Facilities serving smaller municipalities (<1 million gallons per day) had comparatively shorter sewer residence times to facilities serving larger municipalities, though the latter comprise a greater proportion of overall national wastewater volume. The results of this study provide an important data resource in combination with chemical in-sewer biodegradation data to enable probabilistic risk assessment of consumer product chemicals disposed of down the drain.


Subject(s)
Sewage/chemistry , Wastewater/chemistry , Biodegradation, Environmental , Risk Assessment , Time Factors , United States , Waste Disposal Facilities , Waste Disposal, Fluid
5.
Integr Environ Assess Manag ; 12(4): 782-92, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27156081

ABSTRACT

The "in-stream exposure model" iSTREEM(®) , a Web-based model made freely available to the public by the American Cleaning Institute, provides a means to estimate concentrations of "down-the-drain" chemicals in effluent, receiving waters, and drinking water intakes across national and regional scales under mean annual and low-flow conditions. We provide an overview of the evolution and utility of the iSTREEM model as a screening-level risk assessment tool relevant for down-the-drain products. The spatial nature of the model, integrating point locations of facilities along a hydrologic network, provides a powerful framework to assess environmental exposure and risk in a spatial context. A case study compared national distributions of modeled concentrations of the fragrance 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8,-hexamethylcyclopenta-γ-2-benzopyran (HHCB) and the insect repellent N,N-Diethyl-m-toluamide (DEET) to available monitoring data at comparable flow conditions. The iSTREEM low-flow model results yielded a conservative distribution of values, whereas the mean-flow model results more closely resembled the concentration distribution of monitoring data. We demonstrate how model results can be used to construct a conservative estimation of the distribution of chemical concentrations for effluents and streams leading to the derivation of a predicted environmental concentration (PEC) using the high end of the concentration distribution (e.g., 90th percentile). Data requirements, assumptions, and applications of iSTREEM are discussed in the context of other down-the-drain modeling approaches to enhance understanding of comparative advantages and uncertainties for prospective users interested in exposure modeling for ecological risk assessment. Integr Environ Assess Manag 2016;12:782-792. © 2016 SETAC.


Subject(s)
Environmental Exposure/analysis , Models, Chemical , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , DEET , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Prospective Studies , Risk Assessment , Rivers , Waste Disposal, Fluid
6.
Sci Total Environ ; 518-519: 302-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25770452

ABSTRACT

Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models.


Subject(s)
Drinking Water/chemistry , Rivers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , United States , Waste Disposal, Fluid , Water Pollutants, Chemical/standards
7.
Integr Environ Assess Manag ; 10(2): 237-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23913410

ABSTRACT

Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population's ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (<500 US$ per capita/annum required to purchase product) the maximum deviation from baseline (emission distributed via population) is less than a factor of 3 and it would not result in significant differences in chemical risk assessments. However, for other product types (>500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets.


Subject(s)
Cosmetics/analysis , Cosmetics/economics , Environmental Monitoring/methods , Environmental Pollutants/analysis , Environmental Pollutants/economics , Gross Domestic Product/statistics & numerical data , Marketing/statistics & numerical data , Asia , Cosmetics/chemistry , Environmental Monitoring/economics , Environmental Pollutants/chemistry , Risk Assessment , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...