Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 7(1): 68, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37940797

ABSTRACT

BACKGROUND: Chest x-ray is commonly used for pulmonary abnormality screening. However, since the image characteristics of x-rays highly depend on the machine specifications, an artificial intelligence (AI) model developed for specific equipment usually fails when clinically applied to various machines. To overcome this problem, we propose an image manipulation pipeline. METHODS: A total of 15,010 chest x-rays from systems with different generators/detectors were retrospectively collected from five institutions from May 2020 to February 2021. We developed an AI model to classify pulmonary abnormalities using x-rays from a single system. Then, we externally tested its performance on chest x-rays from various machine specifications. We compared the area under the receiver operating characteristics curve (AUC) of AI models developed using conventional image processing pipelines (histogram equalization [HE], contrast-limited histogram equalization [CLAHE], and unsharp masking [UM] with common data augmentations) with that of the proposed manipulation pipeline (XM-pipeline). RESULTS: The XM-pipeline model showed the highest performance for all the datasets of different machine specifications, such as chest x-rays acquired from a computed radiography system (n = 356, AUC 0.944 for XM-pipeline versus 0.917 for HE, 0.705 for CLAHE, 0.544 for UM, p [Formula: see text] 0.001, for all) and from a mobile x-ray generator (n = 204, AUC 0.949 for XM-pipeline versus 0.933 for HE, p = 0.042, 0.932 for CLAHE (p = 0.009), 0.925 for UM (p = 0.001). CONCLUSIONS: Applying the XM-pipeline to AI training increased the diagnostic performance of the AI model on the chest x-rays of different machine configurations. RELEVANCE STATEMENT: The proposed training pipeline would successfully promote a wide application of the AI model for abnormality screening when chest x-rays are acquired using various x-ray machines. KEY POINTS: • AI models developed using x-rays of a specific machine suffer from generalization. • We proposed a new image processing pipeline to address the generalization problem. • AI models were tested using multicenter external x-ray datasets of various machines. • AI with our pipeline achieved the highest diagnostic performance than conventional methods.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted , X-Rays , Retrospective Studies , Radiography
2.
J Thorac Oncol ; 18(10): 1303-1322, 2023 10.
Article in English | MEDLINE | ID: mdl-37390982

ABSTRACT

INTRODUCTION: The incidence and mortality of lung cancer are highest in Asia compared with Europe and USA, with the incidence and mortality rates being 34.4 and 28.1 per 100,000 respectively in East Asia. Diagnosing lung cancer at early stages makes the disease amenable to curative treatment and reduces mortality. In some areas in Asia, limited availability of robust diagnostic tools and treatment modalities, along with variations in specific health care investment and policies, make it necessary to have a more specific approach for screening, early detection, diagnosis, and treatment of patients with lung cancer in Asia compared with the West. METHOD: A group of 19 advisors across different specialties from 11 Asian countries, met on a virtual Steering Committee meeting, to discuss and recommend the most affordable and accessible lung cancer screening modalities and their implementation, for the Asian population. RESULTS: Significant risk factors identified for lung cancer in smokers in Asia include age 50 to 75 years and smoking history of more than or equal to 20 pack-years. Family history is the most common risk factor for nonsmokers. Low-dose computed tomography screening is recommended once a year for patients with screening-detected abnormality and persistent exposure to risk factors. However, for high-risk heavy smokers and nonsmokers with risk factors, reassessment scans are recommended at an initial interval of 6 to 12 months with subsequent lengthening of reassessment intervals, and it should be stopped in patients more than 80 years of age or are unable or unwilling to undergo curative treatment. CONCLUSIONS: Asian countries face several challenges in implementing low-dose computed tomography screening, such as economic limitations, lack of efforts for early detection, and lack of specific government programs. Various strategies are suggested to overcome these challenges in Asia.


Subject(s)
Lung Neoplasms , Humans , Middle Aged , Aged , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Early Detection of Cancer/methods , Consensus , Tomography, X-Ray Computed/methods , Asia/epidemiology , Mass Screening
SELECTION OF CITATIONS
SEARCH DETAIL
...