Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(33): 21241-21249, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32875260

ABSTRACT

A novel coumarin derivative (5) was synthesized and used as a colorimetric and fluorescent probe for selective detection of Cu2+ ions in the presence of other metal ions, with the detection limits of 5.7 and 4.0 ppb, respectively. Cu2+ ion reacts with probe 5 to form a 1:1 stoichiometry complex, resulting in a remarkable redshift of absorption maximum from 460 to 510 nm, as well as almost completely quenching fluorescence intensity of probe 5 at the wavelength of 536 nm. These changes can be distinctly observed by naked eyes. In addition, the working pH range of probe 5 is wide and suitable for physiological conditions, thus probe 5 may be used for detection of Cu2+ ions in living cells. The stable structures of probe 5 and its 1:1 complex with Cu2+ ion were optimized at the PBE0/6-31+G(d) level of theory. The presence and characteristics of bonds in compounds were studied through atoms in a molecule and natural bond orbital analysis. The formation of the complex led to a strong transfer of electron density from probe 5 as a ligand to Cu2+ ion, resulting in breaking the π-electron conjugated system, which is the cause of fluorescence quenching and color change of 5-Cu2+ complex.

2.
RSC Adv ; 10(60): 36265-36274, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517943

ABSTRACT

Herein, a novel fluorescent sensor has been developed for the detection of biothiols based on theoretical calculations of the stability constant of the complex between a Cu2+ ion and (E)-3-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-7-(diethylamino) coumarin (BDC) as a fluorescent ligand. In this study, on the basis of density functional theory method, the Gibbs free energy of ligand-exchange reaction and the solvation model were carried out using thermodynamic cycles. The obtained results are in good agreement with the experimental data. The BDC-Cu2+ complex can be used as a fluorescent sensor for the detection of biothiols in the presence of non-thiol containing amino acids, with a detection limit for cysteine at 0.3 µM. Moreover, theoretical calculations of excited states were used to elucidate variations in the fluorescence properties. The computed results show that the excited doublet states D2 and D1 are dark doublet states, which quench the fluorescence of the complex.

3.
J Chem Inf Model ; 51(12): 3226-34, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22129432

ABSTRACT

ß-Lactam resistance of methicillin-resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes staph infections, represents a serious threat to public health. This arises primarily due to the inability of ß-lactam antibiotics to inhibit the transpeptidase activity of penicillin-binding protein 2a (PBP2a). Effective inhibition of PBP2a to prevent the bacterial cell wall biosynthesis is of great importance for the treatment of a variety of clinically challenging infectious diseases caused by MRSA. To gain fundamental insights into the mode of covalent inhibition of the enzyme, we have carried out computational studies of the acylation reactions between small ß-lactam molecules (methicilin and nitrocefin) and PBP2a using the B3LYP/6-31G* and ONIOM(B3LYP/6-31G*:AMBER) hybrid quantum mechanical/molecular mechanical methods. Our calculations show that the acylation involves two transition states and that methicilin and nitrocefin undergo acylation in slightly different manners. The acylation of nitrocefin is more facile, which is attributed to the larger release of ring strain and the larger resonance stabilization gained upon ring opening. We suggest that, in addition to the nonbonded interactions between the ligand and the protein, these quantum chemical factors, which are associated with efficiency of the acylation step, should be taken into account and carefully controlled in designing novel ß-lactam inhibitors of PBP2a.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Methicillin Resistance , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin/pharmacology , Penicillin-Binding Proteins/antagonists & inhibitors , Acylation , Anti-Bacterial Agents/chemistry , Catalytic Domain , Cephalosporins/chemistry , Methicillin/chemistry , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Molecular , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...