Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
PLoS One ; 19(6): e0304873, 2024.
Article in English | MEDLINE | ID: mdl-38905179

ABSTRACT

Block cipher is a cryptographic field that is now widely applied in various domains. Besides its security, deployment issues, implementation costs, and flexibility across different platforms are also crucial in practice. From an efficiency perspective, the linear layer is often the slowest transformation and requires significant implementation costs in block ciphers. Many current works employ lookup table techniques for linear layers, but they are quite costly and do not save memory storage space for the lookup tables. In this paper, we propose a novel lookup table technique to reduce memory storage when executing software. This technique is applied to the linear layer of block ciphers with recursive Maximum Distance Separable (MDS) matrices, Hadamard MDS matrices, and circulant MDS matrices of considerable sizes (e.g. sizes of 16, 32, 64, and so on). The proposed lookup table technique leverages the recursive property of linear matrices and the similarity in elements of Hadamard or circulant MDS matrices, allowing the construction of a lookup table for a submatrix instead of the entire linear matrix. The proposed lookup table technique enables the execution of the diffusion layer with unchanged computational complexity (number of XOR operations and memory accesses) compared to conventional lookup table implementations but allows a substantial reduction in memory storage for the pre-computed tables, potentially reducing the storage needed by 4 or 8 times or more. The memory storage will be reduced even more as the size of the MDS matrix increases. For instance, analysis shows that when the matrix size is 64, the memory storage ratio with the proposed lookup table technique decreases by 87.5% compared to the conventional lookup table technique. This method also allows for more flexible software implementations of large-sized linear layers across different environments.


Subject(s)
Software , Algorithms
2.
Medicina (Kaunas) ; 60(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929629

ABSTRACT

Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Plasmodium falciparum , Quinolines , Humans , Artemisinins/therapeutic use , Quinolines/therapeutic use , Vietnam , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Male , Female , Adult , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Drug Resistance/genetics , Adolescent , Middle Aged , Drug Therapy, Combination/methods , Young Adult , Protozoan Proteins/genetics , Real-Time Polymerase Chain Reaction , Mutation , Piperazines
3.
J Pers Med ; 14(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38929840

ABSTRACT

This study compared the therapeutic effects of engineered exosomes derived from RAW264.7 cells overexpressing hsa-let-7i-5p (engineered exosomes) to exosomes from human placenta-derived mesenchymal stem cells (hpMSC exosomes) against sepsis-induced acute lung injury. Adult male C57BL/6 mice were divided into lipopolysaccharide (LPS), LPS plus engineered exosome (LEExo), or LPS plus hpMSC exosome (LMExo) groups, alongside control groups. The results showed that lung injury scores (based on pathohistological characteristics) and the levels of lung function alterations, tissue edema, and leukocyte infiltration in LEExo and LMExo groups were comparable and significantly lower than in the LPS group (all p < 0.05). Furthermore, the levels of inflammation (nuclear factor-κB activation, cytokine upregulation), macrophage activation (hypoxia-inducible factor-1α activation, M1 phase polarization), oxidation, and apoptosis were diminished in LEExo and LMExo groups compared to the LPS group (all p < 0.05). Inhibition of hsa-let-7i-5p attenuated the therapeutic effects of both engineered and hpMSC exosomes. These findings underscore the potent therapeutic capacity of engineered exosomes enriched with hsa-let-7i-5p and their potential as an alternative to hpMSC exosomes for sepsis treatment. Continued research into the mechanisms of action and optimization of engineered exosomes could pave the way for their future clinical application.

4.
J Ginseng Res ; 48(3): 323-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38707646

ABSTRACT

Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

5.
BMC Cancer ; 24(1): 410, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566115

ABSTRACT

BACKGROUND: High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS: RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS: UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Humans , NF-kappa B/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Prognosis , Apoptosis , RNA , Glucuronosyltransferase/genetics , Minor Histocompatibility Antigens
6.
Cells ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38534361

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS: Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS: BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS: Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.


Subject(s)
Brain-Derived Neurotrophic Factor , Osteogenesis , Rats , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Calcium/pharmacology , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Tissue Eng Part A ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38205627

ABSTRACT

Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.

9.
Adv Healthc Mater ; 13(7): e2301679, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37931928

ABSTRACT

The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Zirconium/chemistry , Hydrogels/chemistry , Adsorption , Wound Healing , Inflammation
10.
Clin Transl Med ; 13(12): e1442, 2023 12.
Article in English | MEDLINE | ID: mdl-38037464

ABSTRACT

BACKGROUND: Metabolic dependencies of chronic lymphocytic leukaemia (CLL) cells may represent new personalized treatment approaches in patients harbouring unfavourable features. METHODS: Here, we used untargeted metabolomics and lipidomics analyses to isolate metabolomic features associated with aggressive CLL and poor survival outcomes. We initially focused on profiles associated with overexpression of the adverse metabolic marker glycosyltransferase (UGT2B17) associated with poor survival and drug resistance. RESULTS: Leukaemic B-cell metabolomes indicated a significant perturbation in lipids, predominantly bio-active sphingolipids. Expression of numerous enzyme-encoding genes of sphingolipid biosynthesis pathways was significantly associated with shorter patient survival. Targeted metabolomics further exposed higher circulating levels of glucosylceramides (C16:0 GluCer) in CLL patients relative to healthy donors and an aggressive cancer biology. In multivariate analyses, C16:0 GluCer and sphinganine were independent prognostic markers and were inversely linked to treatment-free survival. These two sphingolipid species function as antagonistic mediators, with sphinganine being pro-apoptotic and GluCer being pro-proliferative, tested in leukemic B-CLL cell models. Blocking GluCer synthesis using ceramide glucosyltransferase inhibitors induced cell death and reduced the proliferative phenotype, which further sensitized a leukaemic B-cell model to the anti-leukaemics fludarabine and ibrutinib in vitro. CONCLUSIONS: Specific sphingolipids may serve as prognostic markers in CLL, and inhibiting enzymatic pathways involved in their biosynthesis has potential as a therapaeutic approach.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Sphingolipids/genetics , Sphingolipids/metabolism , Sphingolipids/therapeutic use , Metabolomics , B-Lymphocytes/metabolism
11.
J Genet Eng Biotechnol ; 21(1): 116, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955754

ABSTRACT

BACKGROUND: Bigfin squid is one of the economically important seafood resources in Vietnam's fisheries and the waters around Con Dao and Phu Quoc islands are two major fishing grounds where this species has been actively exploited. The start codon targeted polymorphism (SCoT) and CAAT box-derived polymorphism (CBDP) techniques were used to generate DNA fingerprinting data to analyze the genetic diversity, variation, and structure of the two populations in the waters surrounding Phu Quoc and Con Dao islands together with mitochondrial cytochrome C oxidase subunit I (COI) gene sequence data. RESULTS: Con Dao population possessed a higher diversity [expected heterozygosity (He) = 0.2254, Shannon index (I) = 0.3459, percentage of polymorphic bands (PPB) = 80.14%, nucleotide diversity (π) = 0.0336, haplotype diversity (h) = 0.910 with 16 haplotypes] than Phu Quoc population (He = 0.1854, I = 0.2873, PPB = 70.38%, π = 0.0246, h = 0.838 with 14 haplotypes). The genetic diversity at species level in the investigated region was at level of He = 0.2169, I = 0.3399, PPB = 86.41, π = 0.0289, and h = 0.892 with 24 haplotypes. Based on DNA fingerprinting data, the pairwise genetic similarity coefficients among individuals of the Con Dao population were lower (average of 0.7977) than the Phu Quoc population (average of 0.8316). Based on mitochondrial COI data, the pairwise genetic distances among individuals of the Con Dao population were higher (average of 0.0361) than the Phu Quoc population (average of 0.0263). Gene differentiation (GST) between two investigated populations was 0.0316 and 0.0310 leading to the genetic distance was 0.0573 and 0.0213 and the gene flow between them was Nm = 8.2209 and 11.4700 migrants per generation among populations based on DNA fingerprinting and based on COI gene sequence data, respectively. Genetic variation within individuals of both populations (WP) played the key role in total genetic variation at species level in surveyed region. CONCLUSIONS: For the bigfin reef squid species in the surveyed region, the Con Dao population had the higher genetic diversity than the Phu Quoc population, between them existed a low to moderate genetic differentiation and a genetic exchange via gene flow. The DNA fingerprinting data better revealed the genetic differentiation between the two surveyed populations while the mitochondrial COI gene sequence data could show the phylogenetic relationship among the surveyed individuals and the other from the sea regions in Southeast Asia. Based on the results obtained, fisheries management strategies are suggested toward the conservation and sustainable exploitation of this species.

12.
ACS Appl Mater Interfaces ; 15(46): 53835-53846, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939291

ABSTRACT

Interparticle electronic coupling is essential for self-assembled colloidal nanocrystal (NC) solid semiconductors to fulfill their wide-tunable electrical and optoelectrical properties, but it has been limited by disorders. Here, a disorder-tolerant coupling approach is presented by synthesizing self-organized NC solids based on amorphous/nanocrystalline phase-composites. The ZnO amorphous matrix, which infills the space between the less regularly ordered ZnO NCs, enables robust electronic coupling between neighboring NCs via the resonant wave function overlap, leading to a disorder-tolerant resonant conducting state. Field-effect transistors based on phase-composite semiconductors show delocalized band-like transport with superior field-effect mobility values (∼75 cm2 V-1 s-1), compared to amorphous or polycrystalline ZnO semiconductors. Furthermore, the broad amorphous matrix can mitigate interfacial defects between crystalline regions through atomic relaxation, in contrast to narrow grain boundaries in polycrystalline films, resulting in a significantly low interface trap density for phase-composite NC solids. Density function theory calculations and quantum transport simulations using the nonequilibrium Green's function formalism elucidate the origins of superior and highly disorder-tolerant electron transport in phase-composite NC solids. Our report introduces a new class of NC solids complementary to the colloidal counterpart and will be applicable to CMOS-compatible emerging device technologies.

13.
Home Healthc Now ; 41(6): 330-337, 2023.
Article in English | MEDLINE | ID: mdl-37922136

ABSTRACT

The mortality rate due to chronic obstructive pulmonary disease (COPD) has increased annually, and non-adherence to treatment is one reason for this rise. Developing intervention programs to enhance treatment adherence for people with COPD is essential. The purpose of this mixed-methods study was to determine the acceptability, appropriateness, and feasibility of such a program. We sought the opinions of 15 healthcare managers and 15 practicing nurses from three hospitals across Vietnam and conducted group discussions and interviews with 30 patients with COPD. We then formulated integrated conclusions on the acceptability, appropriateness, and feasibility of the program. The overall average score of 12 items to test the acceptability, appropriateness, and feasibility of the program from both healthcare managers and practicing nurses was high (M = 4.31; SD = 0.11) and (M = 4.37; SD = 0.12), respectively. Thirty COPD outpatients agreed the content and plan of the program were necessary for them to enhance their treatment adherence at home. The document content was appropriate, easy to understand, and the support and education provided by nurses was helpful. The educational intervention program to promote treatment adherence for patients with COPD was acceptable, appropriate, and feasible from the views of healthcare managers, nurses, and patients with COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Feasibility Studies , Pulmonary Disease, Chronic Obstructive/therapy , Treatment Adherence and Compliance , Vietnam
14.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834406

ABSTRACT

Antioxidant and anti-inflammatory mechanisms counteract the pathogenesis of chronic diseases, such as diabetes, aging, and cancer. Therefore, enhancing antioxidant and anti-inflammatory functions may help manage these pathological conditions. This study aimed to assess the antioxidant and anti-inflammatory potentials of lipophilic fraction of Liriope platyphylla seeds (LLPS) using network pharmacology, molecular docking, and in vitro experiments. Here GC-MS analysis tentatively identified forty-three lipophilic compounds in LLPS. LLPS exhibited powerful antioxidant activity, according to the results from chemical-based antioxidant assays on DPPH, ABTS+, superoxide anion, hydrogen peroxide, nitric oxide, and hydroxyl radicals scavenging, lipid peroxidation, reducing antioxidant powers, and total antioxidant capacity. Additionally, LLPS enhanced cellular antioxidant capacity by inhibiting reactive oxygen species formation and elevating antioxidant enzyme levels, including catalase and heme oxygenase-1. Moreover, LLPS attenuated inflammatory response by reducing nitric oxide secretion and downregulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1ß in lipopolysaccharide-treated macrophages. Network pharmacology and molecular docking analyses showed that key compounds in LPPS, particularly phytosterols and fatty acid esters, exerted antioxidant and anti-inflammatory properties through regulating NFKB1, PTGS1, PTGS2, TLR4, PRKCA, PRKCD, KEAP1, NFE2L2, and NR1l2. Overall, these data suggest that LLPS may be a potential antioxidant and anti-inflammatory agent for developing functional foods.


Subject(s)
Antioxidants , Nitric Oxide , Antioxidants/pharmacology , Antioxidants/therapeutic use , Molecular Docking Simulation , Kelch-Like ECH-Associated Protein 1/metabolism , Nitric Oxide/metabolism , Network Pharmacology , NF-E2-Related Factor 2/metabolism , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
15.
Foods ; 12(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37835296

ABSTRACT

Polyscias fruticosa leaf (PFL) has been used in food and traditional medicine for the treatment of rheumatism, ischemia, and neuralgia. However, the lipophilic components of PFL and their biological properties remain unknown. This study, integrating network pharmacology analysis with in silico and in vitro approaches, aimed to elucidate the antioxidant and anti-inflammatory capacities of lipophilic extracts from PFL. A total of 71 lipophilic compounds were identified in PFL using gas chromatography-mass spectrometry. Network pharmacology and molecular docking analyses showed that key active compounds, mainly phytosterols and sesquiterpenes, were responsible for regulating core target genes, such as PTGS2, TLR4, NFE2L2, PRKCD, KEAP1, NFKB1, NR1l2, PTGS1, AR, and CYP3A4, which were mostly enriched in oxidative stress and inflammation-related pathways. Furthermore, lipophilic extracts from PFL offered powerful antioxidant capacities, as evident in our cell-free antioxidant assays. These extracts also provided a protection against oxidative stress by inducing the expression of catalase and heme oxygenase-1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Additionally, lipophilic fractions from PFL showed anti-inflammatory potential in downregulating the level of pro-inflammatory factors in LPS-treated macrophages. Overall, these findings provide valuable insights into the antioxidant and anti-inflammatory properties of lipophilic extracts from PFL, which can be used as a fundamental basis for developing nutraceuticals and functional foods.

16.
Plants (Basel) ; 12(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37571040

ABSTRACT

Diseases transmitted by mosquitoes and snails cause a large burden of disease in less developed countries, especially those with low-income levels. An approach to control vectors and intermediate hosts based on readily available essential oils, which are friendly to the environment and human health, may be an effective solution for disease control. Guava is a fruit tree grown on a large scale in many countries in the tropics, an area heavily affected by tropical diseases transmitted by mosquitoes and snails. Previous studies have reported that the extracted essential oils of guava cultivars have high yields, possess different chemotypes, and exhibit toxicity to different insect species. Therefore, this study was carried out with the aim of studying the chemical composition and pesticide activities of six cultivars of guava grown on a large scale in Vietnam. The essential oils were extracted by hydrodistillation using a Clevenger-type apparatus for 6 h. The components of the essential oils were determined using gas-chromatography-mass-spectrometry (GC-MS) analysis. Test methods for pesticide activities were performed in accordance with WHO guidelines and modifications. Essential oil samples from Vietnam fell into two composition-based clusters, one of (E)-ß-caryophyllene and the other of limonene/(E)-ß-caryophyllene. The essential oils PG03 and PG05 show promise as environmentally friendly pesticides when used to control Aedes mosquito larvae with values of 24 h LC50-aegypti of 0.96 and 0.40 µg/mL while 24 h LC50-albopictus of 0.50 and 0.42 µg/mL. These two essential oils showed selective toxicity against Aedes mosquito larvae and were safe against the non-target organism Anisops bouvieri. Other essential oils may be considered as molluscicides against Physa acuta (48 h LC50 of 4.10 to 5.00 µg/mL) and Indoplanorbis exustus (48 h LC50 of 3.85 to 7.71 µg/mL) and with less toxicity to A. bouvieri.

17.
Food Microbiol ; 115: 104309, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567615

ABSTRACT

Penicillium camemberti is a domesticated species adapted to the dairy environment, which is used as adjunct cultures to ripen soft cheeses. A recent population genomics analysis on P. camemberti revealed that P. camemberti is a clonal lineage with two varieties almost identical genetically but with contrasting phenotypes in terms of growth, color, mycotoxin production and inhibition of contaminants. P. camemberti variety camemberti is found on Camembert and Brie cheeses, and P. camemberti variety caseifulvum is mainly found on other cheeses like Saint-Marcellin and Rigotte de Condrieu. This study aimed to evaluate the impact of water activity (aw) reduced by sodium chloride (NaCl) and the increase of carbon dioxide (CO2) partial pressure, on conidial germination and growth of two varieties of P. camemberti: var. Camemberti and var. Caseifulvum. Mathematical models were used to describe the responses of P. camemberti strains to both abiotic factors. The results showed that these genetically distant strains had similar responses to increase in NaCl and CO2 partial pressure. The estimated cardinal values were very close between the strains although all estimated cardinal values were significantly different (Likelihood ratio tests, pvalue = 0.05%). These results suggest that intraspecific variability could be more exacerbated during fungal growth compared with conidial germination, especially in terms of macroscopic morphology. Indeed, var. Caseifulvum seemed to be more sensitive to an increase of CO2 partial pressure, as shown by the fungal morphology, with the occurrence of irregular outgrowths, while the morphology of var. Camemberti remains circular. These data could make it possible to improve the control of fungal development as a function of salt and carbon dioxide partial pressure. These abiotic factors could serve as technological barriers to prevent spoilage and increase the shelf life of cheeses. The present data will allow more precise predictions of fungal proliferation as a function of salt and carbon dioxide partial pressure, which are significant technological hurdles in cheese production.


Subject(s)
Cheese , Penicillium , Sodium Chloride/pharmacology , Spores, Fungal , Carbon Dioxide , Cheese/microbiology
18.
Food Microbiol ; 115: 104324, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567633

ABSTRACT

In dairy industry, filamentous fungi are used as adjunct cultures in fermented products for their technological properties but they could also be responsible for food spoilage and mycotoxin production. The consumer demands about free-preservative products has increased in recent years and lead to develop alternative methods for food preservation. Modified Atmosphere Packaging (MAP) can inhibit fungal growth and therefore increase the food product shelf-life. This study aimed to evaluate radial growth as a function of CO2 and more particularly carbonic acid for fourteen adjuncts and/or fungal spoiler isolated from dairy products or dairy environment by using predictive mycology tools. The impact of the different chemical species linked to CO2 (notably carbonic acid) were study because it was reported previously that undissociated carbonic acid impacted bacterial growth and bicarbonates ions were involved in modifications of physiological process of fungal cells. A significant diversity in the responses of selected strains was observed. Mucor circinelloides had the fastest growth rates (µ > 11 mm. day-1) while Bisifusarium domesticum, Cladosporium herbarum and Penicillium bialowiezense had the slowest growth rates (µ < 1 mm. day-1). Independently of the medium pH, the majority of strains were sensitive to total carbonic acid. In this case, it was not possible to conclude if CO2 active form was gaseous or aqueous so modeling were performed as a function of CO2 percentage. Only Geotrichum candidum and M. circinelloides strains were sensitive to undissociated carbonic acid. Among the fourteen strains, P. bialowiezense was the less sensitive strain to CO2, no growth was observed at 50% of CO2 only for this strain. M. lanceolatus was the less sensitive strain to CO2, the CO250 which reduce the growth rates by 50% was estimated at 138% of CO2. Low CO2 percentage improved the growth of Penicillium expansum, Penicillium roqueforti and Paecilomyces niveus. Mathematical models (without and with optimum) were suggested to describe the impact of CO2 percentage or undissociated carbonic acid concentration on fungal growth rate.


Subject(s)
Carbon Dioxide , Carbonic Acid , Carbon Dioxide/pharmacology , Fungi , Dairy Products/microbiology , Food Preservation/methods
19.
Thorac Res Pract ; 24(3): 117-122, 2023 May.
Article in English | MEDLINE | ID: mdl-37503612

ABSTRACT

OBJECTIVE: The purpose of this study was to establish and evaluate the validity and reliability of the Vietnamese version of the inhaler use scale for chronic obstructive pulmonary disease patients. MATERIAL AND METHODS: This study was conducted with 150 participants who were admitted to the Outpatient Department of Pulmonary Diseases in Vietnam, using a face-to-face interview technique. The Kaiser-Meyer-Olkin test, Bartlett's test, and exploratory factor analysis were used to assess construct validity. Cronbach's alpha coefficient and intraclass correlation coefficient were used to evaluate the reliability of the scale. RESULTS: In the results of exploratory factor analysis with eigenvalues > 1.00, 3 factors of scale appeared. The total variance of the questionnaire was 78.78%, where variances of each component were 34.16%, 26.88%, and 17.73%, respectively. Cronbach's alpha coefficients of scale in the first test and re-test after 4 weeks were 0.913 and 0.901, respectively. The intraclass correlation coefficient was 0.826. CONCLUSION: The validity and reliability of the Vietnamese version of the inhaler use scale study were found to be equivalent to the original author-developed scale and it can be applied to measure the factors affecting behavioral intention in Vietnamese chronic obstructive pulmonary disease patients.

20.
Anal Biochem ; 675: 115229, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37393974

ABSTRACT

Glucagon is a peptide involved in controlling the body's blood glucose levels. The majority of analytical methods used for its quantitation are based on immunoassays that suffer from cross-reactivity with other peptides. For accurate routine analysis a liquid chromatography tandem mass spectrometry (LC-MSMS) was developed. Glucagon was extracted from plasma samples by a combination of protein precipitation using ethanol and mixed anion exchange solid phase extraction. Linearity for glucagon was above 0.99 (r2) up to a concentration range of 771 ng/L with a lower limit of quantification established at 19 ng/L. Precision of the method was below 9% (coefficient of variation). Recovery was 93%. Correlations with the existing immunoassay displayed a significant negative bias.


Subject(s)
Glucagon , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Immunoassay , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...