Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Methods ; 16(18): 2913-2920, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38660999

ABSTRACT

The quick and accurate diagnosis of pathogens has appeared as a pressing issue in clinical diagnostics, environmental monitoring, and food safety. The available assays are suffering from limited capacities in simple, fast, low-cost, and on-site detection to increase prevention and proper treatment. Herein, we address these challenges by developing a simple, speedy, affordable, and ultrasensitive nanoplasmonic biosensor for colorimetric detection of cDNA from staphylococcal RNA relying on the distance-dependent optical features of silver nanostructures for the measurement of color variations and spectral shifts owing to the plasmon coupling generated by the cross-linking accumulation of AgNPs. The method described utilizes silver nanoparticles (AgNPs) immobilized with two different single-stranded oligonucleotides (ssDNA1 and ssDNA2) that specifically recognize the target DNA. Sandwich hybridization of target DNA with ssDNA1 and ssDNA2 induced color variations and spectral shifts of AgNPs, whereas test samples without the target DNA remained yellow as the initial color of colloidal silver. The designed nanoplasmonic biosensor demonstrated high specificity with the detection limit (LOD) of ∼1.8 amol target DNA (∼106 molecules per test) in the broad linear dynamic range from 0.01 to 100 nM, and LOD down to a few cells was attained for amplified bacterial nucleic acids and a linear range from 102 CFU mL-1 to 107 CFU mL-1. The sensing approach showed great potential for the timely diagnosis of pathogens in low-density samples, and it has considerable merits over traditional culture approaches and qPCR techniques.


Subject(s)
Colorimetry , Metal Nanoparticles , Silver , Staphylococcus aureus , Silver/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Staphylococcus aureus/isolation & purification , Biosensing Techniques/methods , Limit of Detection , Humans , DNA, Bacterial/analysis
3.
Foods ; 12(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37959131

ABSTRACT

The postharvest preservation of Ngoc Linh ginseng (NL ginseng) is essential to retain its quality and sensory values for prolonged storage. In this study, the efficacy of NL ginseng preservation by coating chitosan derivatives in combination with polyvinyl alcohol (PVA) solutions was investigated under refrigeration conditions (~3 °C; ~40% RH) for 56 days. The effect of the chitosan-based solutions, including N,O-carboxymethyl chitosan (NOCC), chitosan oligomer saccharide (COS), or chitosan (CS), and the blend solutions (NOCC-PVA or COS-PVA) on the coated NL ginsengs was observed during storage. The pH values, viscosity, and film-forming capability of the coating solutions were determined, while the visual appearance, morphology, and mechanical properties of the films formed on glass substrates as a ginseng model for coating were also observed. The appearance, skin lightness, weight loss, sensory evaluation, total saponin content (TSC), total polyphenol content (TPC), and total antioxidant capacity (TAC) of the coated NL ginsengs were evaluated. The findings showed that the observed values of the coated NL ginsengs were better than those of the non-coated samples, with the exception of the COS-coated samples, which had completely negative results. Furthermore, the NOCC-PVA solution exhibited a better preservation effect compared with the COS-PVA one based on the observed indices, except for TPC and TAC, which were not impacted by the coating. Notably, the optimal preservation time was determined to be 35 days. This study presents promising preservation technology using the coating solution of NOCC-PVA, harnessing the synergistic effect of pH 7.4 and the form-firming capacity, to maintain the shelf life, medicinal content, and sensory attributes of NL ginseng.

4.
Anal Methods ; 15(32): 3991-3999, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37545366

ABSTRACT

The dengue virus, once transmitted to people through a mosquito bite, causes an infectious disease called dengue fever. Dengue fever can develop into two fatal syndromes, namely dengue shock syndrome and dengue hemorrhagic fever. The existing strategies for detecting dengue infection mainly employ serological immunoassays and a real time PCR technique. Along with the positive features of efficiency, accuracy, and reproducibility, these procedures are limited by being time-consuming, costly, requiring special equipment for analysis, and unable to be carried out at the point-of-care level. Herein, we developed a colorimetric nanosensor for detecting dengue virus in clinical samples that is rapid, accurate, sensitive, and less expensive. The sensing platform relies on the specific binding between the DNA-conjugated AuNPs and genomic RNA of dengue, which results in the DNA-RNA heteroduplex structure formation that turns the gold colloid's ruby red color to blue due to the nano-aggregation in an acidic environment, which can be detected by the naked eye or measuring the absorbance. The DNA probe was designed to bind to a genomic RNA conserved region recognized in all four dengue serotypes. Dengue virus serotype 1 was utilized as a framework for virus detection; the designed nanosensor exhibited great specificity and selectivity, with the detection limit of ∼1 pg µL-1 (∼1.66 × 106 RNA copies per reaction) and time of analysis of about 1 h including the RNA extraction step. The proposed colorimetric nanosensor offers an alternative tool for specific and highly sensitive detection of dengue that eliminates the requirement for thermal cycling and primer sets in PCR-based assays.


Subject(s)
Biosensing Techniques , Dengue Virus , Dengue , Metal Nanoparticles , Humans , Dengue Virus/genetics , Dengue/diagnosis , Colorimetry , Gold Colloid , Reproducibility of Results , Gold , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction , RNA, Viral/analysis , RNA, Viral/genetics , DNA
5.
Sci Technol Adv Mater ; 20(1): 276-290, 2019.
Article in English | MEDLINE | ID: mdl-31068981

ABSTRACT

This is a preliminary study of a material comprising gelatin (Gel), silver nanoparticles (AgNPs) and curcumin (Cur) aimed for wound-healing treatment. Gelatin was used to stabilize AgNPs and encapsulate curcumin to form a therapeutic composite (GelCurAg) for their strong bactericidal and antioxidant properties. GelCurAg formulations with different gelatin concentrations were characterized to attain information about their physiochemical properties and the loading efficiency of therapeutic agents. In vitro assessment of GelCurAg focused on antibacterial, antioxidant and cytotoxic aspects. The results suggested that Gel1CurAg (synthesized from 1% gelatin solution) could be utilized as potential therapeutic agents in treating infectious wound owing to its bactericidal and antioxidant effects and low toxicity for clinical uses.

6.
J Biomater Sci Polym Ed ; 28(9): 864-878, 2017 06.
Article in English | MEDLINE | ID: mdl-28345449

ABSTRACT

In this study, biomimic porous polycaprolactone/poly (lactide-co-glycolide) loading biphasic tricalcium phosphate (PCL/PLGA-BCP) scaffolds were fabricated successfully by solvent evaporation method. The distribution of biphasic tricalcium phosphate (BCP) in polycaprolactone/poly (lactide-co-glycolide) (PCL/PLGA) scaffold was confirmed by micro-computed tomography (micro-CT) scanning, scanning electron microscope (SEM) observation and Energy-dispersive X-ray Spectroscopy (EDS) analysis. The hydrophilicity of the scaffolds was confirmed by contact angle measurement. In in vitro experiments, proliferation of human bone marrow mesenchymal stem cell (hBMSCs) and its osteoblastic differentiation on scaffold were assessed for 1, 2 and 3 weeks using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence observation, hematoxylin & eosin (H&E) staining and real-time polymerase chain reaction (RT-PCR). In in vivo experiments, ossification was observed using micro-CT analysis and histological staining.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Lactic Acid/chemistry , Osteogenesis , Polyesters/chemistry , Polyglycolic Acid/chemistry , Tissue Engineering , Tissue Scaffolds , Animals , Bone and Bones/chemistry , Cell Differentiation , Cell Proliferation , Cross-Linking Reagents/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity , Rabbits , Tomography, X-Ray Computed
7.
J Mater Sci Mater Med ; 27(10): 156, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27620739

ABSTRACT

In this study, electrospun polycaprolactone membrane coated with chitosan-silver nanoparticles (CsAg), electrospun polycaprolactone/chitosan/Ag nanoparticles, was fabricated by immersing the plasma-treated electrospun polycaprolactone membrane in the CsAg gel. The plasma modification of electrospun polycaprolactone membrane prior to CsAg coating was tested by methylene blue stain and scanning electron microscope. The presence of silver and chitosan on the plasma-treated electrospun polycaprolactone membrane was confirmed by energy-dispersive X-ray spectroscopy and FT-IR spectrum. Scanning electron microscope observation was employed to observe the morphology of the membranes. The release of Ag ions from electrospun polycaprolactone/chitosan/Ag nanoparticles membrane was tested using atomic absorption spectrometry. Electrospun polycaprolactone/chitosan/Ag nanoparticles membrane inherited advantages from both CsAg gel and electrospun polycaprolactone membrane such as: increasing biocompatibility, mechanical strength, and antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this investigation introduces a highly potential membrane that can increase the efficacy of the wound dressing process.


Subject(s)
Bandages, Hydrocolloid , Chitosan/chemistry , Metal Nanoparticles/chemistry , Polyesters/chemistry , Silver/chemistry , Wound Healing , Aluminum/chemistry , Animals , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Cell Line , Fibroblasts/drug effects , Fibroblasts/metabolism , Ions , Mice , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Tensile Strength , Water/chemistry
8.
Front Hum Neurosci ; 7: 516, 2013.
Article in English | MEDLINE | ID: mdl-24032008

ABSTRACT

In recent decades, a lot of achievements have been obtained in imaging and cognitive neuroscience of human brain. Brain's activities can be shown by a number of different kinds of non-invasive technologies, such as: Near-Infrared Spectroscopy (NIRS), Magnetic Resonance Imaging (MRI), and ElectroEncephaloGraphy (EEG; Wolpaw et al., 2002; Weiskopf et al., 2004; Blankertz et al., 2006). NIRS has become the convenient technology for experimental brain purposes. The change of oxygenation changes (oxy-Hb) along task period depending on location of channel on the cortex has been studied: sustained activation in the motor cortex, transient activation during the initial segments in the somatosensory cortex, and accumulating activation in the frontal lobe (Gentili et al., 2010). Oxy-Hb concentration at the aforementioned sites in the brain can also be used as a predictive factor allows prediction of subject's investigation behavior with a considerable degree of precision (Shimokawa et al., 2009). In this paper, a study of recognition algorithm will be described for recognition whether one taps the left hand (LH) or the right hand (RH). Data with noises and artifacts collected from a multi-channel system will be pre-processed using a Savitzky-Golay filter for getting more smoothly data. Characteristics of the filtered signals during LH and RH tapping process will be extracted using a polynomial regression (PR) algorithm. Coefficients of the polynomial, which correspond to Oxygen-Hemoglobin (Oxy-Hb) concentration, will be applied for the recognition models of hand tapping. Support Vector Machines (SVM) will be applied to validate the obtained coefficient data for hand tapping recognition. In addition, for the objective of comparison, Artificial Neural Networks (ANNs) was also applied to recognize hand tapping side with the same principle. Experimental results have been done many trials on three subjects to illustrate the effectiveness of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL