Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1834(2): 487-98, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23232152

ABSTRACT

Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.


Subject(s)
Databases, Protein , Proteins/chemistry , Proteins/genetics , Proteomics , Crystallography, X-Ray , Protein Structure, Tertiary
2.
Biochemistry ; 51(37): 7250-62, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22924672

ABSTRACT

Intrinsically disordered, highly charged protein sequences act as entropic bristles (EBs), which, when translationally fused to partner proteins, serve as effective solubilizers by creating both a large favorable surface area for water interactions and large excluded volumes around the partner. By extending away from the partner and sweeping out large molecules, EBs can allow the target protein to fold free from interference. Using both naturally occurring and artificial polypeptides, we demonstrate the successful implementation of intrinsically disordered fusions as protein solubilizers. The artificial fusions discussed herein have a low level of sequence complexity and a high net charge but are diversified by means of distinctive amino acid compositions and lengths. Using 6xHis fusions as controls, soluble protein expression enhancements from 65% (EB60A) to 100% (EB250) were observed for a 20-protein portfolio. Additionally, these EBs were able to more effectively solubilize targets compared to frequently used fusions such as maltose-binding protein, glutathione S-transferase, thioredoxin, and N utilization substance A. Finally, although these EBs possess very distinct physiochemical properties, they did not perturb the structure, conformational stability, or function of the green fluorescent protein or the glutathione S-transferase protein. This work thus illustrates the successful de novo design of intrinsically disordered fusions and presents a promising technology and complementary resource for researchers attempting to solubilize recalcitrant proteins.


Subject(s)
Protein Biosynthesis , Protein Folding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/genetics , Solubility
3.
Mol Biosyst ; 8(1): 134-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21761058

ABSTRACT

Induced pluripotent stem (iPS) cells can be obtained from terminally differentiated somatic cells by overexpression of defined sets of reprogramming transcription factors. These protein sets have been called the Yamanaka factors, namely Sox2, Oct3/4 (Pou5f1), Klf4, and c-Myc, and the Thomson factors, namely Sox2, Oct3, Lin28, and Nanog. Other sets of proteins, while not essential for the formation of iPS cells, are important for improving the efficiency of the induction and still other sets of proteins are important as markers for embryonic stem cells. Structural information about most of these important proteins is very sparse. Our bioinformatics analysis herein reveals that these reprogramming factors and most of the efficiency-improving and embryonic stem cell markers are highly enriched in intrinsic disorder. As is typical for transcription factors, these proteins are modular. Specific sites for interaction with other proteins and DNA are dispersed in the long regions of intrinsic disorder. These highly dynamic interaction sites are evidently responsible for the delicate interplay among various molecules. The bioinformatics analysis given herein should facilitate the investigation of the roles and organization of these modular interaction sites, thereby helping to shed further light on the pathways that underlie the mechanism(s) by which terminally differentiated cells are converted to iPS cells.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Protein Folding , Proteins/chemistry , Proteins/metabolism , Animals , Binding Sites , Cellular Reprogramming , Databases, Protein , Humans , Kruppel-Like Factor 4 , Mice , Models, Molecular , Protein Conformation , Sequence Alignment , Transcription Factors/metabolism
4.
Trends Biotechnol ; 24(10): 435-42, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16876893

ABSTRACT

Despite substantial increases in research funding by the pharmaceutical industry, drug discovery rates seem to have reached a plateau or perhaps are even declining, suggesting the need for new strategies. Protein-protein interactions have long been thought to provide interesting drug discovery targets, but the development of small molecules that modulate such interactions has so far achieved a low success rate. In contrast to this historic trend, a few recent successes raise hopes for routinely identifying druggable protein-protein interactions. In this Opinion article, we point out the importance of coupled binding and folding for protein-protein signalling interactions generally, and from this and associated observations, we develop a new strategy for identifying protein-protein interactions that would be particularly promising targets for modulation by small molecules. This novel strategy, based on intrinsically disordered protein, has the potential to increase significantly the discovery rate for new molecule entities.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Design , Protein Conformation , Protein Interaction Mapping/methods , Signal Transduction/physiology , Humans , Protein Binding , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...