Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 8(14): 3665-3678, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38507736

ABSTRACT

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon that increases the risk of hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood.1 Here, we profile peripheral blood gene expression in 66 968 single cells from a cohort of 17 patients with CH and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant Tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3A (DNMT3A) cells with nonmutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a proinflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage inhibitory factor. We also found that T cells from patients with CH, although mostly unmutated, had decreased expression of GTPase of the immunity associated protein genes, which are critical to T-cell development, suggesting that CH impairs T-cell function.


Subject(s)
Clonal Hematopoiesis , Inflammation , Humans , Inflammation/genetics , Genotype , Mutation , Gene Expression Profiling , Dioxygenases , DNA Methyltransferase 3A/metabolism , Male , Female , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
2.
Nat Med ; 30(3): 810-817, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38454125

ABSTRACT

Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.


Subject(s)
Acute Kidney Injury , Clonal Hematopoiesis , Animals , Mice , Humans , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Risk Factors , Aging/genetics , Acute Kidney Injury/genetics , Mutation/genetics
3.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38377486

ABSTRACT

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Subject(s)
Action Potentials , Adaptor Proteins, Signal Transducing , Atrial Fibrillation , Disease Models, Animal , Interleukin-1beta , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/genetics , Humans , Action Potentials/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Oxidative Stress/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/drug effects , Genetic Predisposition to Disease , Benzylamines/pharmacology , Heart Rate/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Inflammation Mediators/metabolism , Signal Transduction , Female , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phenotype
4.
Commun Biol ; 5(1): 1401, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36543914

ABSTRACT

Independent studies demonstrate the significance of gut microbiota on the pathogenesis of chronic lung diseases; yet little is known regarding the role of the gut microbiota in lung fibrosis progression. Here we show, using the bleomycin murine model to quantify lung fibrosis in C57BL/6 J mice housed in germ-free, animal biosafety level 1 (ABSL-1), or animal biosafety level 2 (ABSL-2) environments, that germ-free mice are protected from lung fibrosis, while ABSL-1 and ABSL-2 mice develop mild and severe lung fibrosis, respectively. Metagenomic analysis reveals no notable distinctions between ABSL-1 and ABSL-2 lung microbiota, whereas greater microbial diversity, with increased Bifidobacterium and Lactobacilli, is present in ABSL-1 compared to ABSL-2 gut microbiota. Flow cytometric analysis reveals enhanced IL-6/STAT3/IL-17A signaling in pulmonary CD4 + T cells of ABSL-2 mice. Fecal transplantation of ABSL-2 stool into germ-free mice recapitulated more severe fibrosis than transplantation of ABSL-1 stool. Lactobacilli supernatant reduces collagen 1 A production in IL-17A- and TGFß1-stimulated human lung fibroblasts. These findings support a functional role of the gut microbiota in augmenting lung fibrosis severity.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Pulmonary Fibrosis , Animals , Humans , Mice , Disease Models, Animal , Interleukin-17 , Mice, Inbred C57BL , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Fibroblasts/metabolism , Fibroblasts/microbiology
5.
Circ Arrhythm Electrophysiol ; 15(3): e010636, 2022 03.
Article in English | MEDLINE | ID: mdl-35212578

ABSTRACT

BACKGROUND: With aging, the human atrium invariably develops amyloid composed of ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide). Preamyloid oligomers are the primary cytotoxic species in amyloidosis, and they accumulate in the atrium during human hypertension and a murine hypertensive model of atrial fibrillation susceptibility. We tested the hypothesis that preamyloid oligomers derived from natriuretic peptides cause cytotoxic and electrophysiological effects in atrial cells that promote arrhythmia susceptibility and that oligomer formation is enhanced for a mutant form of ANP linked to familial atrial fibrillation. METHODS: Oligomerization was assessed by Western blot analysis. Bioenergic profiling was performed using the Seahorse platform. Mitochondrial dynamics were investigated with immunostaining and gene expression quantitated using quantitative reverse transcription polymerase chain reaction. Action potentials and ionic currents were recorded using patch-clamp methods and intracellular calcium measured using Fura-2. RESULTS: Oligomer formation was markedly accelerated for mutant ANP (mutANP) compared with WT (wild type) ANP. Oligomers derived from ANP, BNP, and mutANP suppressed mitochondrial function in atrial HL-1 cardiomyocytes, associated with increased superoxide generation and reduced biogenesis, while monomers had no effects. In hypertensive mice, atrial cardiomyocytes displayed reduced action potential duration and maximal dV/dT of phase 0, with an elevated resting membrane potential, compared with normotensive mice. Similar changes were observed when atrial cells were exposed to oligomers. mutANP monomers produced similar electrophysiological effects as mutANP oligomers, likely due to accelerated oligomer formation, while ANP and BNP monomers did not. Oligomers decreased Na+ current, inward rectifier K+ current, and L-type Ca++ current, while increasing sustained and transient outward K+ currents, to account for these effects. CONCLUSIONS: These findings provide compelling evidence that natriuretic peptide oligomers are novel mediators of atrial arrhythmia susceptibility. Moreover, the accelerated oligomerization by mutANP supports a role for these mediators in the pathophysiology of this mutation in atrial fibrillation.


Subject(s)
Atrial Fibrillation , Atrial Natriuretic Factor , Animals , Atrial Fibrillation/etiology , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/pharmacology , Heart Atria , Mice , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/metabolism
6.
Am J Physiol Heart Circ Physiol ; 322(1): H36-H43, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34767487

ABSTRACT

Mice are routinely used to investigate molecular mechanisms underlying the atrial fibrillation (AF) substrate. We sought to optimize transesophageal rapid atrial pacing (RAP) protocols for the detection of AF susceptibility in mouse models. Hypertensive and control C57Bl/6J mice were subjected to burst RAP at a fixed stimulus amplitude. The role of parasympathetic involvement in pacing-related atrioventricular (AV) block and AF was examined using an intraperitoneal injection of atropine. In a crossover study, burst and decremental RAP at twice diastolic threshold were compared for induction of AV block during pacing. The efficacy of burst and decremental RAP to elicit an AF phenotype was subsequently investigated in mice deficient in the lymphocyte adaptor protein (Lnk-/-) resulting in systemic inflammation, or the paired-like homeodomain-2 transcription factor (Pitx2+/-) as a positive control. When pacing at a fixed stimulus intensity, pacing-induced AV block with AF induction occurred frequently, so that there was no difference in AF burden between hypertensive and control mice. These effects were prevented by atropine administration, implicating parasympathetic activation due to ganglionic stimulation as the etiology. When mice with AV block during pacing were eliminated from the analysis, male Lnk-/- mice displayed an AF phenotype only during burst RAP compared with controls, whereas male Pitx2+/- mice showed AF susceptibility during burst and decremental RAP. Notably, Lnk-/- and Pitx2+/- females exhibited no AF phenotype. Our data support the conclusion that multiple parameters should be used to ascertain AF inducibility and facilitate reproducibility across models and studies.NEW & NOTEWORTHY Methods were developed to optimize transesophageal rapid atrial pacing (RAP) to detect AF susceptibility in new and established mouse models. High stimulus intensity and pacing rates caused parasympathetic stimulation, with pacing-induced AV block and excessive AF induction in normal mice. For a given model, pacing at twice TH enabled improved phenotype discrimination in a pacing mode and sex-specific manner. Transesophageal RAP should be individually optimized when developing a mouse model of AF.


Subject(s)
Atrial Fibrillation/physiopathology , Echocardiography, Transesophageal/methods , Adaptor Proteins, Signal Transducing/genetics , Animals , Atrial Fibrillation/genetics , Echocardiography, Transesophageal/instrumentation , Echocardiography, Transesophageal/standards , Heart Rate , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results , Transcription Factors/genetics , Homeobox Protein PITX2
SELECTION OF CITATIONS
SEARCH DETAIL
...