Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
NPJ Precis Oncol ; 8(1): 105, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762545

ABSTRACT

The diagnostic spectrum for AML patients is increasingly based on genetic abnormalities due to their prognostic and predictive value. However, information on the AML blast phenotype regarding their maturational arrest has started to regain importance due to its predictive power for drug responses. Here, we deconvolute 1350 bulk RNA-seq samples from five independent AML cohorts on a single-cell healthy BM reference and demonstrate that the morphological differentiation stages (FAB) could be faithfully reconstituted using estimated cell compositions (ECCs). Moreover, we show that the ECCs reliably predict ex-vivo drug resistances as demonstrated for Venetoclax, a BCL-2 inhibitor, resistance specifically in AML with CD14+ monocyte phenotype. We validate these predictions using LUMC proteomics data by showing that BCL-2 protein abundance is split into two distinct clusters for NPM1-mutated AML at the extremes of CD14+ monocyte percentages, which could be crucial for the Venetoclax dosing patients. Our results suggest that Venetoclax resistance predictions can also be extended to AML without recurrent genetic abnormalities and possibly to MDS-related and secondary AML. Lastly, we show that CD14+ monocytic dominated Ven/Aza treated patients have significantly lower overall survival. Collectively, we propose a framework for allowing a joint mutation and maturation stage modeling that could be used as a blueprint for testing sensitivity for new agents across the various subtypes of AML.

2.
Leuk Lymphoma ; : 1-11, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710017

ABSTRACT

Cytokine release syndrome (CRS) occurs frequently after haplo-identical allogeneic stem cell transplantation (alloSCT) with post-transplant cyclophosphamide (PTCy), increasing nonrelapse mortality (NRM) and decreasing survival. Data on CRS in HLA-matched alloSCT are limited and effects of specific HLA-mismatches on CRS development unknown. We hypothesized that in HLA-matched alloSCT increasing degrees of HLA-mismatching influence CRS incidence, NRM and survival. Retrospective analysis of 126 HLA-matched PTCy-alloSCT patients showed that higher degrees of HLA-mismatching significantly increased CRS incidence (26%, 75% and 90% CRS with 12/12, 10/10 and 9/10 matched donors, respectively). Maximum temperature during CRS increased with higher HLA-mismatch. Specific associations between HLA-mismatches and CRS could be determined. Grade 2 CRS and CRS-induced grade 3 fever were associated with significantly increased NRM (p < 0.001 and p = 0.003, respectively) and inferior survival (p < 0.001 and p = 0.005, respectively). NRM was mainly caused by disease conditions that may be considered CRS-induced inflammatory responses (encephalopathy, cryptogenic organizing pneumonia and multi-organ failure).

3.
Front Immunol ; 15: 1335341, 2024.
Article in English | MEDLINE | ID: mdl-38545096

ABSTRACT

Introduction: Unmodified donor lymphocyte infusions (DLI) after allogeneic stem cell transplantation (alloSCT) can boost the beneficial Graft-versus-Leukemia (GvL) effect but may also induce severe Graft-versus-Host-Disease (GvHD). To improve the balance between GvL and GvHD, it is crucial to identify factors that influence the alloreactivity of DLI. Methods: We investigated the effects of the presence of patient-derived antigen-presenting cells at time of DLI as estimated by the bone marrow (BM) chimerism status, lymphopenia as measured by the absolute lymphocyte count (ALC) at time of DLI, and the presence of a viral infection (de novo or reactivation) close to DLI on the risk of GvHD after DLI. The cohort consisted of patients with acute leukemia or myelodysplastic syndrome who prophylactically or pre-emptively received DLI as standard care after alemtuzumab-based alloSCT. In patients at high risk for relapse, DLI was administered at 3 months after alloSCT (n=88) with a dose of 0.3x106 or 0.15x106 T cells/kg in case of a related or unrelated donor, respectively. All other patients (n=76) received 3x106 or 1.5x106 T cells/kg, respectively, at 6 months after alloSCT. Results: For both DLIs, patients with reduced-intensity conditioning and an unrelated donor had the highest risk of GvHD. For DLI given at three months, viral infection within 1 week before and 2 weeks after DLI was an additional significant risk factor (hazard ratio (HR) 3.66 compared to no viral infection) for GvHD. At six months after alloSCT, viral infections were rare and not associated with GvHD. In contrast, mixed BM chimerism (HR 3.63 for ≥5% mixed chimerism compared to full donor) was an important risk factor for GvHD after DLI given at six months after alloSCT. ALC of <1000x106/l showed a trend for association with GvHD after this DLI (HR 2.05 compared to ≥1000x106/l, 95% confidence interval 0.94-4.45). Furthermore, the data suggested that the presence of a viral infection close to the DLI at three months or ≥5% mixed chimerism at time of the DLI at six months correlated with the severity of GvHD, thereby increasing their negative impact on the current GvHD-relapse-free survival. Conclusion: These data demonstrate that the risk factors for GvHD after DLI depend on the setting of the DLI.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Virus Diseases , Humans , T-Lymphocytes , Lymphocyte Transfusion/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Leukemia, Myeloid, Acute/complications , Unrelated Donors , Virus Diseases/complications
4.
Blood ; 143(18): 1856-1872, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38427583

ABSTRACT

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I , Minor Histocompatibility Antigens , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/genetics , T-Lymphocytes/immunology , Genome-Wide Association Study , Transplantation, Homologous , Female , Male
5.
Leukemia ; 38(4): 751-761, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360865

ABSTRACT

Subtyping of acute myeloid leukaemia (AML) is predominantly based on recurrent genetic abnormalities, but recent literature indicates that transcriptomic phenotyping holds immense potential to further refine AML classification. Here we integrated five AML transcriptomic datasets with corresponding genetic information to provide an overview (n = 1224) of the transcriptomic AML landscape. Consensus clustering identified 17 robust patient clusters which improved identification of CEBPA-mutated patients with favourable outcomes, and uncovered transcriptomic subtypes for KMT2A rearrangements (2), NPM1 mutations (5), and AML with myelodysplasia-related changes (AML-MRC) (5). Transcriptomic subtypes of KMT2A, NPM1 and AML-MRC showed distinct mutational profiles, cell type differentiation arrests and immune properties, suggesting differences in underlying disease biology. Moreover, our transcriptomic clusters show differences in ex-vivo drug responses, even when corrected for differentiation arrest and superiorly capture differences in drug response compared to genetic classification. In conclusion, our findings underscore the importance of transcriptomics in AML subtyping and offer a basis for future research and personalised treatment strategies. Our transcriptomic compendium is publicly available and we supply an R package to project clusters to new transcriptomic studies.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Nuclear Proteins/genetics , Transcriptome/genetics , Nucleophosmin , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Gene Expression Profiling , Prognosis
6.
Sci Adv ; 9(47): eadj6367, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000035

ABSTRACT

Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4+ T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immunopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes. We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across all loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes.


Subject(s)
Antigen Presentation , HLA-DR Antigens , Humans , HLA-DR Antigens/metabolism , HLA-DP Antigens/chemistry , HLA-DQ Antigens/chemistry , Peptides/chemistry
7.
Front Immunol ; 14: 1208814, 2023.
Article in English | MEDLINE | ID: mdl-37593737

ABSTRACT

Alloreactive donor-derived T-cells play a pivotal role in alloimmune responses after allogeneic hematopoietic stem cell transplantation (alloSCT); both in the relapse-preventing Graft-versus-Leukemia (GvL) effect and the potentially lethal complication Graft-versus-Host-Disease (GvHD). The balance between GvL and GvHD can be shifted by removing T-cells via T-cell depletion (TCD) to reduce the risk of GvHD, and by introducing additional donor T-cells (donor lymphocyte infusions [DLI]) to boost the GvL effect. However, the association between T-cell kinetics and the occurrence of allo-immunological events has not been clearly demonstrated yet. Therefore, we investigated the complex associations between the T-cell kinetics and alloimmune responses in a cohort of 166 acute leukemia patients receiving alemtuzumab-based TCD alloSCT. Of these patients, 62 with an anticipated high risk of relapse were scheduled to receive a prophylactic DLI at 3 months after transplant. In this setting, we applied joint modelling which allowed us to better capture the complex interplay between DLI, T-cell kinetics, GvHD and relapse than traditional statistical methods. We demonstrate that DLI can induce detectable T-cell expansion, leading to an increase in total, CD4+ and CD8+ T-cell counts starting at 3 months after alloSCT. CD4+ T-cells showed the strongest association with the development of alloimmune responses: higher CD4 counts increased the risk of GvHD (hazard ratio 2.44, 95% confidence interval 1.45-4.12) and decreased the risk of relapse (hazard ratio 0.65, 95% confidence interval 0.45-0.92). Similar models showed that natural killer cells recovered rapidly after alloSCT and were associated with a lower risk of relapse (HR 0.62, 95%-CI 0.41-0.93). The results of this study advocate the use of joint models to further study immune cell kinetics in different settings.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Kinetics , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes
8.
Transplant Cell Ther ; 29(4): 268.e1-268.e10, 2023 04.
Article in English | MEDLINE | ID: mdl-36587743

ABSTRACT

After allogeneic stem cell transplantation (alloSCT), patient-derived stem cells that survived the pretransplantation conditioning compete with engrafting donor stem cells for bone marrow (BM) repopulation. In addition, donor-derived alloreactive T cells present in the stem cell product may favor establishment of complete donor-derived hematopoiesis by eliminating patient-derived lymphohematopoietic cells. T cell-depleted alloSCT with sequential transfer of potentially alloreactive T cells by donor lymphocyte infusion (DLI) provides a unique opportunity to selectively study how competitive repopulation and allo-immunologic pressure influence lymphohematopoietic recovery. This study aimed to determine the relative contribution of competitive repopulation and donor-derived anti-recipient alloimmunologic pressure on the establishment of lymphohematopoietic chimerism after alloSCT. In this retrospective cohort study of 281 acute leukemia patients treated according to a protocol combining alemtuzumab-based T cell-depleted alloSCT with prophylactic DLI, we investigated engraftment and quantitative donor chimerism in the BM and immune cell subsets. DLI-induced increase of chimerism and development of graft-versus-host disease (GVHD) were analyzed as complementary indicators for donor-derived anti-recipient alloimmunologic pressure. Profound suppression of patient immune cells by conditioning sufficed for sustained engraftment without necessity for myeloablative conditioning or development of clinically significant GVHD. Although 61% of the patients without any DLI or GVHD showed full donor chimerism (FDC) in the BM at 6 months after alloSCT, only 24% showed FDC in the CD4+ T cell compartment. In contrast, 75% of the patients who had received DLI and 83% of the patients with clinically significant GVHD had FDC in this compartment. In addition, 72% of the patients with mixed hematopoiesis receiving DLI converted to complete donor-derived hematopoiesis, of whom only 34% developed clinically significant GVHD. Our data show that competitive repopulation can be sufficient to reach complete donor-derived hematopoiesis, but that some alloimmunologic pressure is needed for the establishment of a completely donor-derived T cell compartment, either by the development of GVHD or by administration of DLI. We illustrate that it is possible to separate the graft-versus-leukemia effect from GVHD, as conversion to durable complete donor-derived hematopoiesis following DLI did not require induction of clinically significant GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , T-Lymphocytes , Chimerism , Retrospective Studies , Transplantation, Homologous , Lymphocyte Transfusion/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/prevention & control
10.
Proc Natl Acad Sci U S A ; 119(49): e2214331119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442096

ABSTRACT

Human leukocyte antigen (HLA) molecules present small peptide antigens to T cells, thereby allowing them to recognize pathogen-infected and cancer cells. A central dogma over the last 50+ y is that peptide binding to HLA molecules is mediated by the docking of side chains of particular amino acids in the peptide into pockets in the HLA molecules in a conserved N- to C-terminal orientation. Whether peptides can be presented in a reversed C- to N-terminal orientation remains unclear. Here, we performed large-scale identification of peptides bound to HLA-DP molecules and observed that in addition to peptide binding in an N- to C-terminal orientation, in 9 out of 14 HLA-DP allotypes, reverse motifs are found, compatible with C- to N-terminal peptide binding. Moreover, we isolated high-avidity human cytomegalovirus (CMV)-specific HLA-DP-restricted CD4+ T cells from the memory repertoire of healthy donors and demonstrate that such T cells recognized CMV-derived peptides bound to HLA-DPB1*01:01 or *05:01 in a reverse C- to N-terminal manner. Finally, we obtained a high-resolution HLA-DPB1*01:01-CMVpp65(142-158) peptide crystal structure, which is the molecular basis for C- to N-terminal peptide binding to HLA-DP. Our results point to unique features of HLA-DP molecules that substantially broaden the HLA class II bound peptide repertoire to combat pathogens and eliminate cancer cells.


Subject(s)
Cytomegalovirus Infections , Peptides , Humans , Amino Acids , Cytomegalovirus , Histocompatibility Antigens Class II , HLA-DP Antigens/immunology , T-Lymphocytes/immunology
11.
Ned Tijdschr Geneeskd ; 1662022 08 10.
Article in Dutch | MEDLINE | ID: mdl-36036703

ABSTRACT

Work-related asthma is an underestimated problem. More awareness is needed for early identification of work-related lung diseases to prevent permanent damage in patients with lung diseases. Work-related asthma can lead to an increase in the burden of disease, the number of exacerbations and hospital admissions. Therefore, exposure to substances with irritating and/or sensitizing properties should be regarded as an additional treatable trait in asthma treatment. The number of occupations where such exposures plays a role is large and diverse. Inquiring about the profession, activities or future career choice of the (asthma) patient during the first consultation is of great importance for the correct diagnosis and treatment. Cooperation between pulmonologist, lung nurse, ENT specialist, dermatologist, company doctor and occupational hygienist can contribute to this. A regional organization with a 'multidisciplinary consultation' for occupational lung diseases is important to guarantee optimal care and advice. The clinical case series demonstrate work-related asthma in clinical practice.


Subject(s)
Asthma , Occupational Diseases , Occupational Exposure , Occupational Health Physicians , Asthma/diagnosis , Asthma/etiology , Asthma/therapy , Humans , Occupational Diseases/diagnosis
12.
Front Immunol ; 13: 831822, 2022.
Article in English | MEDLINE | ID: mdl-35251023

ABSTRACT

In the context of HLA-DP-mismatched allogeneic stem cell transplantation, mismatched HLA-DP alleles can provoke profound allo-HLA-DP-specific immune responses from the donor T-cell repertoire leading to graft-versus-leukemia effect and/or graft-versus-host disease in the patient. The magnitude of allo-HLA-DP-specific immune responses has been shown to depend on the specific HLA-DP disparity between donor and patient and the immunogenicity of the mismatched HLA-DP allele(s). HLA-DP peptidome clustering (DPC) was developed to classify the HLA-DP molecules based on similarities and differences in their peptide-binding motifs. To investigate a possible categorization of HLA-DP molecules based on overlap of presented peptides, we identified and compared the peptidomes of the thirteen most frequently expressed HLA-DP molecules. Our categorization based on shared peptides was in line with the DPC classification. We found that the HLA-DP molecules within the previously defined groups DPC-1 or DPC-3 shared the largest numbers of presented peptides. However, the HLA-DP molecules in DPC-2 segregated into two subgroups based on the overlap in presented peptides. Besides overlap in presented peptides within the DPC groups, a substantial number of peptides was also found to be shared between HLA-DP molecules from different DPC groups, especially for groups DPC-1 and -2. The functional relevance of these findings was illustrated by demonstration of cross-reactivity of allo-HLA-DP-reactive T-cell clones not only against HLA-DP molecules within one DPC group, but also across different DPC groups. The promiscuity of peptides presented in various HLA-DP molecules and the cross-reactivity against different HLA-DP molecules demonstrate that these molecules cannot be strictly categorized in immunogenicity groups.


Subject(s)
Graft vs Host Disease , HLA-DP Antigens , Graft vs Leukemia Effect , Humans , Peptides , T-Lymphocytes
13.
Blood ; 137(7): 923-928, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33025005

ABSTRACT

In hematopoietic cell transplantation (HCT), permissive HLA-DPB1 mismatches between patients and their unrelated donors are associated with improved outcomes compared with nonpermissive mismatches, but the underlying mechanism is incompletely understood. Here, we used mass spectrometry, T-cell receptor-ß (TCRß) deep sequencing, and cellular in vitro models of alloreactivity to interrogate the HLA-DP immunopeptidome and its role in alloreactive T-cell responses. We find that permissive HLA-DPB1 mismatches display significantly higher peptide repertoire overlaps compared with their nonpermissive counterparts, resulting in lower frequency and diversity of alloreactive TCRß clonotypes in healthy individuals and transplanted patients. Permissiveness can be reversed by the absence of the peptide editor HLA-DM or the presence of its antagonist, HLA-DO, through significant broadening of the peptide repertoire. Our data establish the degree of immunopeptidome divergence between donor and recipient as the mechanistic basis for the clinically relevant permissive HLA-DPB1 mismatches in HCT and show that permissiveness is dependent on HLA-DM-mediated peptide editing. Its key role for harnessing T-cell alloreactivity to HLA-DP highlights HLA-DM as a potential novel target for cellular and immunotherapy of leukemia.


Subject(s)
Epitopes/immunology , HLA-D Antigens/immunology , HLA-DP beta-Chains/immunology , Histocompatibility/immunology , Peptides/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Allografts , Antigens, Differentiation, B-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Endosomes/metabolism , Epitopes/metabolism , Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , HeLa Cells , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Histocompatibility/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Mass Spectrometry , Molecular Chaperones , Peptides/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Unrelated Donors
14.
Front Immunol ; 11: 1804, 2020.
Article in English | MEDLINE | ID: mdl-32973756

ABSTRACT

Graft-vs.-leukemia (GVL) reactivity after HLA-matched allogeneic stem cell transplantation (alloSCT) is mainly mediated by donor T cells recognizing minor histocompatibility antigens (MiHA). If MiHA are targeted that are exclusively expressed on hematopoietic cells of recipient origin, selective GVL reactivity without severe graft-vs.-host-disease (GVHD) may occur. In this phase I study we explored HA-1H TCR gene transfer into T cells harvested from the HA-1H negative stem-cell donor to treat HA-1H positive HLA-A*02:01 positive patients with high-risk leukemia after alloSCT. HA-1H is a hematopoiesis-restricted MiHA presented in HLA-A*02:01. Since we previously demonstrated that donor-derived virus-specific T-cell infusions did not result in GVHD, we used donor-derived EBV and/or CMV-specific T-cells to be redirected by HA-1H TCR. EBV and/or CMV-specific T-cells were purified, retrovirally transduced with HA-1H TCR, and expanded. Validation experiments illustrated dual recognition of viral antigens and HA-1H by HA-1H TCR-engineered virus-specific T-cells. Release criteria included products containing more than 60% antigen-specific T-cells. Patients with high risk leukemia following T-cell depleted alloSCT in complete or partial remission were eligible. HA-1H TCR T-cells were infused 8 and 14 weeks after alloSCT without additional pre-conditioning chemotherapy. For 4/9 included patients no appropriate products could be made. Their donors were all CMV-negative, thereby restricting the production process to EBV-specific T-cells. For 5 patients a total of 10 products could be made meeting the release criteria containing 3-280 × 106 virus and/or HA-1H TCR T-cells. No infusion-related toxicity, delayed toxicity or GVHD occurred. One patient with relapsed AML at time of infusions died due to rapidly progressing disease. Four patients were in remission at time of infusion. Two patients died of infections during follow-up, not likely related to the infusion. Two patients are alive and well without GVHD. In 2 patients persistence of HA-1H TCR T-cells could be illustrated correlating with viral reactivation, but no overt in-vivo expansion of infused T-cells was observed. In conclusion, HA-1H TCR-redirected virus-specific T-cells could be made and safely infused in 5 patients with high-risk AML, but overall feasibility and efficacy was too low to warrant further clinical development using this strategy. New strategies will be explored using patient-derived donor T-cells isolated after transplantation transduced with HA-1H-specific TCR to be infused following immune conditioning.


Subject(s)
Graft vs Host Disease/therapy , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human/immunology , Immunotherapy, Adoptive , Leukemia/surgery , Minor Histocompatibility Antigens/immunology , Oligopeptides/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Adult , Aged , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation/mortality , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/mortality , Leukemia/genetics , Leukemia/immunology , Leukemia/metabolism , Male , Middle Aged , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Netherlands , Oligopeptides/genetics , Oligopeptides/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Transplantation, Homologous , Treatment Outcome
15.
J Immunol ; 204(12): 3273-3282, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32350084

ABSTRACT

HLA-DP alleles can be classified into functional T cell epitope (TCE) groups. TCE-1 and TCE-2 are clearly defined, but TCE-3 still represents an heterogeneous group. Because polymorphisms in HLA-DP influence the presented peptidome, we investigated whether the composition of peptides binding in HLA-DP may be used to refine the HLA-DP group classification. Peptidomes of human HLA-DP-typed B cell lines were analyzed with mass spectrometry after immunoaffinity chromatography and peptide elution. Gibbs clustering was performed to identify motifs of binding peptides. HLA-DP peptide-binding motifs showed a clear association with the HLA-DP allele-specific sequences of the binding groove. Hierarchical clustering of HLA-DP immunopeptidomes was performed to investigate the similarities and differences in peptidomes of different HLA-DP molecules, and this clustering resulted in the categorization of HLA-DP alleles into 3-DP peptidome clusters (DPC). The peptidomes of HLA-DPB1*09:01, -10:01, and -17:01 (TCE-1 alleles) and HLA-DPB1*04:01, -04:02, and -02:01 (TCE-3 alleles) were separated in two maximal distinct clusters, DPC-1 and DPC-3, respectively, reflecting their previous TCE classification. HLA-DP alleles categorized in DPC-2 shared certain similar peptide-binding motifs with DPC-1 or DPC-3 alleles, but significant differences were observed for other positions. Within DPC-2, divergence between the alleles was observed based on the preference for different peptide residues at position 9. In summary, immunopeptidome analysis was used to unravel functional hierarchies among HLA-DP alleles, providing new molecular insights into HLA-DP classification.


Subject(s)
Epitopes, T-Lymphocyte/genetics , HLA-DP beta-Chains/genetics , HLA-DP beta-Chains/immunology , Peptides/genetics , Polymorphism, Genetic/genetics , Alleles , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Cell Line , Cell Line, Tumor , Epitopes, T-Lymphocyte/immunology , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Testing/methods , Humans , K562 Cells , Peptides/immunology
17.
Leukemia ; 34(3): 831-844, 2020 03.
Article in English | MEDLINE | ID: mdl-31624377

ABSTRACT

Prophylactic infusion of selected donor T cells can be an effective method to restore specific immunity after T-cell-depleted allogeneic stem cell transplantation (TCD-alloSCT). In this phase I/II study, we aimed to reduce the risk of viral complications and disease relapses by administrating donor-derived CD8pos T cells directed against cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus antigens, tumor-associated antigens (TAA) and minor histocompatibility antigens (MiHA). Twenty-seven of thirty-six screened HLA-A*02:01pos patients and their CMVpos and/or EBVpos donors were included. Using MHC-I-Streptamers, 27 T-cell products were generated containing a median of 5.2 × 106 cells. Twenty-four products were administered without infusion-related complications at a median of 58 days post alloSCT. No patients developed graft-versus-host disease during follow-up. Five patients showed disease progression without coinciding expansion of TAA/MiHA-specific T cells. Eight patients experienced CMV- and/or EBV-reactivations. Four of these reactivations were clinically relevant requiring antiviral treatment, of which two progressed to viral disease. All resolved ultimately. In 2/4 patients with EBV-reactivations and 6/8 patients with CMV-reactivations, viral loads were followed by the expansion of donor-derived virus target-antigen-specific T cells. In conclusion, generation of multi-antigen-specific T-cell products was feasible, infusions were well tolerated and expansion of target-antigen-specific T cells coinciding viral reactivations was illustrated in the majority of patients.


Subject(s)
Hematologic Neoplasms/therapy , Stem Cell Transplantation , T-Lymphocytes/immunology , Adenoviridae Infections/prevention & control , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/cytology , Cytomegalovirus Infections/prevention & control , Epstein-Barr Virus Infections/prevention & control , Feasibility Studies , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/immunology , Humans , Immunotherapy , Male , Middle Aged , Minor Histocompatibility Antigens/immunology , Patient Safety , Transplantation, Homologous
18.
Haematologica ; 104(1): 197-206, 2019 01.
Article in English | MEDLINE | ID: mdl-30237261

ABSTRACT

Stem cell grafts from 10/10 HLA-matched unrelated donors are often mismatched for HLA-DP. In some patients, donor T-cell responses targeting the mismatched HLA-DP allele(s) have been found to induce a specific graft-versus-leukemia effect without coinciding graft-versus-host disease, whereas in other cases significant graft-versus-host disease occurred. Cell-lineage-specific recognition patterns within the allogeneic HLA-DP-specific donor T-cell repertoire could explain the differential clinical effects mediated by donor T cells after HLA-DP-mismatched allogeneic stem cell transplantation. To unravel the composition of the HLA-DP T-cell repertoire, donor T-cell responses were provoked by in vitro stimulation with allogeneic HLA-DP-mismatched monocyte-derived dendritic cells. A strategy including depletion of reactivity against autologous dendritic cells allowed efficient identification and enrichment of allo-reactive T cells upon stimulation with HLA-DP-mismatched dendritic cells. In this study we elucidated that the allogeneic HLA-DP-restricted T-cell repertoire contained T cells with differential cell-lineage-specific recognition profiles. As expected, some of the allogeneic HLA-DP-restricted T cells showed broad recognition of a variety of hematopoietic and non-hematopoietic cell types expressing the targeted mismatched HLA-DP allele. However, a significant proportion of the allogeneic HLA-DP-restricted T cells showed restricted recognition of hematopoietic cells, including primary malignant cells, or even restricted recognition of only myeloid cells, including dendritic cells and primary acute myeloid leukemia samples, but not of other hematopoietic and non-hematopoietic cell types. These data demonstrate that the allogeneic HLA-DP-specific T-cell repertoire contains T cells that show restricted recognition of hematopoietic cells, which may contribute to the specific graft-versus-leukemia effect without coinciding graft-versus-host disease.


Subject(s)
Dendritic Cells/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , HLA-DP Antigens/immunology , Hematologic Neoplasms/immunology , T-Lymphocytes/immunology , Adult , Dendritic Cells/pathology , Female , Graft vs Host Disease/pathology , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Humans , T-Lymphocytes/pathology , Transplantation, Homologous
19.
Front Immunol ; 9: 2236, 2018.
Article in English | MEDLINE | ID: mdl-30344521

ABSTRACT

HLA expression levels have been suggested to be genetically controlled by single nucleotide polymorphisms (SNP) in the untranslated regions (UTR), and expression variants have been associated with the outcome of chronic viral infection and hematopoietic stem cell transplantation (HSCT). In particular, the 3'UTR rs9277534-G/A SNP in HLA-DPB1 has been associated with graft-versus-host-disease after HSCT (Expression model); however its relevance in different immune cells and its mode of action have not been systematically addressed. In addition, there is a strong though not complete overlap between the rs9277534-G/A SNP and structural HLA-DPB1 T cell epitope (TCE) groups which have also been associated with HSCT outcome (TCE Structural model). Here we confirm and extend previous findings of significantly higher HLA-DPB1 expression in B cell lines, unstimulated primary B cells, and monocytes homozygous for rs9277534-G compared to those homozygous for rs9277534-A. However, these differences were abrogated by interferon-γ stimulation or differentiation into dendritic cells. We identify at least seven 3'UTR rs9277534-G/A haplotypes differing by a total of 37 SNP, also characterized by linkage to length variants of a short tandem repeat (STR) in intron 2 and TCE group assignment. 3'UTR mapping did not show any significant differences in post-transcriptional regulation assessed by luciferase assays between two representative rs9277534-G/A haplotypes for any of eight overlapping fragments. Moreover, no evidence for alternative splicing associated with the intron 2 STR was obtained by RT-PCR. In an exemplary cohort of 379 HLA-DPB1 mismatched donor-recipient pairs, risk prediction by the Expression model and the Structural TCE model was 36.7% concordant, with the majority of discordances due to non-applicability of the Expression model. HLA-DPB1 from different TCE groups expressed in the absence of the 3'UTR at similar levels by transfected HeLa cells elicited significantly different mean alloreactive CD4+ T-cell responses, as assessed by CD137 upregulation assays in 178 independent cultures. Taken together, our data provide new insights into the cell type-specific and mechanistic basis of the association between the rs9277534-G/A SNP and HLA-DPB1 expression, and show that, despite partial overlap between both models in HSCT risk-prediction, differential alloreactivity determined by the TCE structural model occurs independently from HLA-DPB1 differential expression.


Subject(s)
3' Untranslated Regions/immunology , Gene Expression Regulation/immunology , Graft vs Host Disease/immunology , HLA-DP beta-Chains/immunology , Hematopoietic Stem Cell Transplantation/methods , Polymorphism, Single Nucleotide/immunology , 3' Untranslated Regions/genetics , Alleles , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Gene Frequency , Graft vs Host Disease/etiology , Graft vs Host Disease/genetics , HLA-DP beta-Chains/genetics , Haplotypes , HeLa Cells , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
Front Immunol ; 9: 280, 2018.
Article in English | MEDLINE | ID: mdl-29520276

ABSTRACT

T cell alloreactivity is mediated by a self-human leukocyte antigen (HLA)-restricted T cell receptor (TCR) repertoire able to recognize both structurally similar and dissimilar allogeneic HLA molecules (i.e., differing by a single or several amino acids in their peptide-binding groove). We hypothesized that thymic selection on self-HLA molecules could have an indirect impact on the size and diversity of the alloreactive response. To test this possibility, we used TCR Vß immunophenotyping and immunosequencing technology in a model of alloreactivity between self-HLA selected T cells and allogeneic HLA-DPB1 (DPB1) differing from self-DPB1*04:02 by a single (DPB1*02:01) or several (DPB1*09:01) amino acids in the peptide-binding groove. CD4+ T cells from three different self-DPB1*04:01,*04:02 individuals were stimulated with HeLa cells stably transduced with the relevant peptide processing machinery, co-stimulatory molecules, and HLA-DP. Flow cytometric quantification of the DPB1-specific T cell response measured as upregulation of the activation marker CD137 revealed significantly lower levels of alloreactivity against DPB1*02:01 compared with DPB1*09:01 (mean CD4+CD137+ frequency 35.2 ± 9.9 vs. 61.5 ± 7.7%, respectively, p < 0.0001). These quantitative differences were, however, not reflected by differences in the breadth of the alloreactive response at the Vß level, with both alloantigens eliciting specific responses from all TCR-Vß specificities tested by flow cytometry, albeit with higher levels of reactivity from most Vß specificities against DPB1*09:01. In line with these observations, TCRB-CDR3 immunosequencing showed no significant differences in mean clonality of sorted CD137+CD4+ cells alloreactive against DPB1*02:01 or DPB1*09:01 [0.39 (0.36-0.45) and 0.39 (0.30-0.46), respectively], or in the cumulative frequencies of the 10 most frequent responding clones (55-67 and 58-62%, respectively). Most of the clones alloreactive against DPB1*02:01 (68.3%) or DPB1*09:01 (75.3%) were characterized by low-abundance (i.e., they were not appreciable among the pre-culture T cells). Interestingly, however, their cumulative frequency was lower against DPB1*02:01 compared with DPB1*09:01 (mean cumulative frequency 35.3 vs. 50.6%, respectively). Our data show that, despite lower levels of alloreactivity, a similar clonal diversity can be elicited by structurally similar compared with structurally dissimilar HLA-DPB1 alloantigens and demonstrate the power of TCRB immunosequencing in unraveling subtle qualitative changes not appreciable by conventional methods.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/physiology , HLA-DP Antigens/immunology , Isoantigens/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Alleles , Clonal Selection, Antigen-Mediated , Genetic Variation , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...