Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 157: 97-107, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33053425

ABSTRACT

An innovative continuous spin-freeze-drying technology for unit doses was recently developed. For this technology, a mechanistic primary drying model was developed allowing the calculation of the optimal dynamic drying trajectory for spin-frozen formulations. In this work, a model-based and experimentally verified comparison was made between conventional batch freeze-drying and spin-freeze-drying by analyzing the outputs (i.e., primary drying endpoint, optimal shelf temperature/power heater and product temperature profile) of both primary drying models. Input parameters such as dried product layer resistance (Rp) and heat input parameters (Kv,Ptot) were experimentally determined for both freeze-drying methods and compared. In addition, optimal dynamic process parameters were calculated for 3 model formulations by using both mechanistic models. Finally, model predictions were validated by measuring the product temperature and primary drying endpoint. It was observed that, when considering the same layer thickness, Rp was generally lower for continuous spin-frozen formulations compared to vials frozen in a conventional batch freeze-dryer. This observation contributes to the short primary drying times of spin-frozen formulations. In addition, as spin-freezing drastically increases the surface area of the product and lowers the dried layer thickness, drying times can be reduced even further while an excellent cake structure and appearance can still be obtained. The primary drying model for spin-frozen formulations proved to be equally accurate for the prediction of the primary drying endpoint and product temperature compared to the batch freeze-drying model.


Subject(s)
Freeze Drying , Models, Theoretical , Technology, Pharmaceutical/methods , Drug Compounding , Temperature , Time Factors , Vapor Pressure
2.
Int J Pharm ; 517(1-2): 348-358, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27988376

ABSTRACT

As the number of applications for polymers in pharmaceutical development is increasing, there is need for fundamental understanding on how such compounds behave during tableting. This research is focussed on the tableting behaviour of amorphous polymers, their solid dispersions and the impact of hot-melt extrusion on the compaction properties of these materials. Soluplus, Kollidon VA 64 and Eudragit EPO were selected as amorphous polymers since these are widely studied carriers for solid dispersions, while Celecoxib was chosen as BCS class II model drug. Neat polymers and physical mixtures (up to 35% drug load) were processed by hot-melt extrusion (HME), milled and sieved to obtain powders with comparable particle sizes as the neat polymer. A novel approach was used for in-line analysis of the compaction properties on a rotary tablet press (Modul P, GEA) using complementary sensors and software (CDAAS, GEA). By combining 'in-die' and 'out-of-die' techniques, it was possible to investigate in a comprehensive way the impact of HME on the tableting behaviour of amorphous polymers and their formulations. The formation of stable glassy solutions altered the formulations towards more fragmentary behaviour under compression which was beneficial for the tabletability. Principal component analysis (PCA) was applied to summarize the behaviour during compaction of the formulations, enabling the selection of Soluplus and Kollidon VA 64 as the most favourable polymers for compaction of glassy solutions.


Subject(s)
Celecoxib/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Polyvinyls/chemistry , Pyrrolidines/chemistry , Tablets/chemistry , Vinyl Compounds/chemistry , Drug Compounding/methods , Hot Temperature , Particle Size , Powders/chemistry , Pressure , Rheology , Technology, Pharmaceutical/statistics & numerical data
3.
Int J Pharm ; 513(1-2): 602-611, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27686052

ABSTRACT

During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively.


Subject(s)
Drug Compounding/methods , Metformin/chemistry , Polyurethanes/chemistry , Administration, Oral , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Dogs , Drug Liberation , Ethanol , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Kinetics , Male , Metformin/blood , Metformin/pharmacokinetics , Polyurethanes/pharmacokinetics , Porosity , Pressure , Solubility , Tablets
4.
Int J Pharm ; 506(1-2): 214-21, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27113866

ABSTRACT

Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility.


Subject(s)
Acetaminophen/administration & dosage , Dyphylline/administration & dosage , Polyurethanes/chemistry , Theophylline/administration & dosage , Acetaminophen/chemistry , Administration, Oral , Chemistry, Pharmaceutical/methods , Crystallization , Delayed-Action Preparations , Drug Carriers/chemistry , Drug Liberation , Dyphylline/chemistry , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Solubility , Tablets , Technology, Pharmaceutical/methods , Theophylline/chemistry
5.
Int J Pharm ; 501(1-2): 139-47, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26851355

ABSTRACT

Mannitol is a frequently used diluent in the production of tablets due to its non-hygroscopic character and low drug interaction potential. Although the δ-polymorph of mannitol has superior tabletability in comparison to α- and ß-mannitol, the latter are most commonly used because large-scale production of δ-mannitol is difficult. Therefore, a continuous method for production of δ-mannitol was developed in the current study. Spray drying an aqueous solution of mannitol and PVP in a ratio of 4:1 resulted in formation of δ-mannitol. The tabletability of a physical mixture of spray dried δ-mannitol with PVP (5%) and paracetamol (75%) was clearly superior to the tabletability of physical mixtures consisting of spray dried α- and ß-mannitol with PVP (5%) and paracetamol (75%) which confirmed the excellent tableting properties of the δ-polymorph. In addition, a coprocessing method was applied to coat paracetamol crystals with δ-mannitol and PVP. The tabletability of the resulting coprocessed particles consisting of 5% PVP, 20% δ-mannitol and 75% paracetamol reached a maximal tensile strength of 2.1 MPa at a main compression pressure of 260 MPa. Moreover the friability of tablets compressed at 184 MPa was only 0.5%. This was attributed to the excellent compression properties of δ-mannitol and the coating of paracetamol crystals with δ-mannitol and PVP during coprocessing.


Subject(s)
Acetaminophen/chemistry , Mannitol/chemistry , Povidone/chemistry , Desiccation/methods , Drug Compounding/methods , Tablets , Tensile Strength
6.
Int J Pharm ; 496(1): 75-85, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-25981618

ABSTRACT

Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Excipients/chemistry , Technology, Pharmaceutical/methods , Freeze Drying , Freezing , Spectroscopy, Near-Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...