Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Catal Sci Technol ; 12(14): 4511-4523, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35924073

ABSTRACT

The promotional effects on photocatalytic hydrogen production of Cu x O clusters deposited using atomic layer deposition (ALD) on P25 TiO2 are presented. The structural and surface chemistry study of Cu x O/TiO2 samples, along with first principles density functional theory simulations, reveal the strong interaction of ALD deposited Cu x O with TiO2, leading to the stabilization of Cu x O clusters on the surface; it also demonstrated substantial reduction of Ti4+ to Ti3+ on the surface of Cu x O/TiO2 samples after Cu x O ALD. The Cu x O/TiO2 photocatalysts showed remarkable improvement in hydrogen productivity, with 11 times greater hydrogen production for the optimum sample compared to unmodified P25. With the combination of the hydrogen production data and characterization of Cu x O/TiO2 photocatalysts, we inferred that ALD deposited Cu x O clusters have a dual promotional effect: increased charge carrier separation and improved light absorption, consistent with known copper promoted TiO2 photocatalysts and generation of a substantial amount of surface Ti3+ which results in self-doping of TiO2 and improves its photo-activity for hydrogen production. The obtained data were also employed to modify the previously proposed expanding photocatalytic area and overlap model to describe the effect of cocatalyst size and weight loading on photocatalyst activity. Comparing the trend of surface Ti3+ content increase and the photocatalytically promoted area, calculated with our model, suggests that the depletion zone formed around the heterojunction of Cu x O-TiO2 is the main active area for hydrogen production, and the hydrogen productivity of the photocatalyst depends on the surface coverage by this active area. However, the overlap of these areas suppresses the activity of the photocatalyst.

2.
Nanotechnology ; 33(6)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34654008

ABSTRACT

Highly responsive methanol sensors working at low temperatures are developed using hierarchical ZnO nanorods decorated by Pt nanoparticles. The sensing materials are fabricated following a 3-step process: electrospinning of ZnO nanofibers, hydrothermal growth of hierarchical ZnO nanorods on the nanofibers and UV-assisted deposition of Pt nanoparticles. The morphology, structure and properties of the materials are examined by field-effect scanning electron microscopy, transmission electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, and electrical measurements. The methanol sensing performance is investigated at different working temperatures in the range of 110 °C-260 °C. It is observed that the surface modification of the ZnO hierarchical nanorods by Pt nanoparticles results in a remarkable enhancement of the sensing response toward methanol, which can reach approximately 19 500 times higher than that of the unmodified ZnO nanorods-based sensor. In addition, this modification enables lower working temperatures with an optimum range of 140 °C-200 °C. Based on the achieved results, a methanol sensing mechanism of the Pt/ZnO structure is proposed.

3.
Nanomaterials (Basel) ; 10(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751573

ABSTRACT

Photocatalysts for water purification typically lack efficiency for practical applications. Here we present a multi-component (Pt:SiO2:TiO2(P25)) material that was designed using knowledge of reaction mechanisms of mono-modified catalysts (SiO2:TiO2, and Pt:TiO2) combined with the potential of atomic layer deposition (ALD). The deposition of ultrathin SiO2 layers on TiO2 nanoparticles, applying ALD in a fluidized bed reactor, demonstrated in earlier studies their beneficial effects for the photocatalytic degradation of organic pollutants due to more acidic surface Si-OH groups which benefit the generation of hydroxyl radicals. Furthermore, our investigation on the role of Pt on TiO2(P25), as an improved photocatalyst, demonstrated that suppression of charge recombination by oxygen adsorbed on the Pt particles, reacting with the separated electrons to superoxide radicals, acts as an important factor for the catalytic improvement. Combining both materials into the resulting Pt:SiO2:TiO2(P25) nanopowder exceeded the dye degradation performance of both the individual SiO2:TiO2(P25) (1.5 fold) and Pt:TiO2(P25) (4-fold) catalysts by 6-fold as compared to TiO2(P25). This approach thus shows that by understanding the individual materials' behavior and using ALD as an appropriate deposition technique enabling control on the nano-scale, new materials can be designed and developed, further improving the photocatalytic activity. Our research demonstrates that ALD is an attractive technology to synthesize multicomponent catalysts in a precise and scalable way.

4.
Small ; 14(23): e1800765, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29745008

ABSTRACT

A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (PO2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures (<120 mbar s) little to no Pt is deposited after the first cycle and most of the Pt is atomically dispersed. Increasing the oxygen exposure above 120 mbar s results in a rapid increase in the Pt loading, which saturates at exposures >> 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high PO2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high PO2 .

5.
Nanomaterials (Basel) ; 8(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364840

ABSTRACT

This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development.

6.
Nanoscale ; 9(30): 10802-10810, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28726943

ABSTRACT

We tailored the size distribution of Pt nanoparticles (NPs) on graphene nanoplatelets at a given metal loading by using low-temperature atomic layer deposition carried out in a fluidized bed reactor operated at atmospheric pressure. The Pt NPs deposited at low temperature (100 °C) after 10 cycles were more active and stable towards the propene oxidation reaction than their high-temperature counterparts. Crucially, the gap in the catalytic performance was retained even after prolonged periods of time (>24 hours) at reaction temperatures as high as 450 °C. After exposure to such harsh conditions the Pt NPs deposited at 100 °C still retained a size distribution that is narrower than the one of the as-synthesized NPs obtained at 250 °C. The difference in performance correlated with the difference in the number of facet sites as estimated after the catalytic test. Our approach provides not only a viable route for the scalable synthesis of stable supported Pt NPs with tailored size distributions but also a tool for studying the structure-function relationship.

7.
J Phys Chem Lett ; 8(5): 975-983, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28178779

ABSTRACT

We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment.

8.
ACS Appl Mater Interfaces ; 8(21): 13590-600, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27165172

ABSTRACT

Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

SELECTION OF CITATIONS
SEARCH DETAIL
...