Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 242(Pt B): 1930-1938, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30061084

ABSTRACT

We performed an environmental risk assessment for microplastics (<5 mm) in the marine environment by estimating the order of magnitude of the past, present and future concentrations based on global plastic production data. In 2100, from 9.6 to 48.8 particles m-3 are predicted to float around in the ocean, which is a 50-fold increase compared to the present-day concentrations. From a meta-analysis with effect data available in literature, we derived a safe concentration of 6650 buoyant particles m-3 below which adverse effects are not likely to occur. Our risk assessment (excluding the potential role of microplastics as chemical vectors) suggests that on average, no direct effects of free-floating microplastics in the marine environment are to be expected up to the year 2100. Yet, even today, the safe concentration can be exceeded in sites that are heavily polluted with buoyant microplastics. In the marine benthic compartment between 32 and 144 particles kg-1 dry sediment are predicted to be present in the beach deposition zone. Despite the scarcity of effect data, we expect adverse ecological effects along the coast as of the second half of the 21st century. From then ambient concentrations will start to outrange the safe concentration of sedimented microplastics (i.e. 540 particles kg-1 sediment). Additional ecotoxicological research in which marine species are chronically exposed to realistic environmental microplastic concentration series are urgently needed to verify our findings.


Subject(s)
Environmental Monitoring , Models, Chemical , Plastics/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Environmental Pollution/analysis , Oceans and Seas , Risk Assessment
2.
Environ Res ; 143(Pt B): 46-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26249746

ABSTRACT

Microplastics, plastic particles and fragments smaller than 5mm, are ubiquitous in the marine environment. Ingestion and accumulation of microplastics have previously been demonstrated for diverse marine species ranging from zooplankton to bivalves and fish, implying the potential for microplastics to accumulate in the marine food web. In this way, microplastics can potentially impact food safety and human health. Although a few methods to quantify microplastics in biota have been described, no comparison and/or intercalibration of these techniques have been performed. Here we conducted a literature review on all available extraction and quantification methods. Two of these methods, involving wet acid destruction, were used to evaluate the presence of microplastics in field-collected mussels (Mytilus galloprovincialis) from three different "hotspot" locations in Europe (Po estuary, Italy; Tagus estuary, Portugal; Ebro estuary, Spain). An average of 0.18±0.14 total microplastics g(-1) w.w. for the Acid mix Method and 0.12±0.04 total microplastics g(-1) w.w. for the Nitric acid Method was established. Additionally, in a pilot study an average load of 0.13±0.14 total microplastics g(-1) w.w. was recorded in commercial mussels (Mytilus edulis and M. galloprovincialis) from five European countries (France, Italy, Denmark, Spain and The Netherlands). A detailed analysis and comparison of methods indicated the need for further research to develop a standardised operating protocol for microplastic quantification and monitoring.


Subject(s)
Aquatic Organisms/chemistry , Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Food Contamination/analysis , Mytilus/chemistry , Seafood/analysis , Seafood/standards
3.
Mar Environ Res ; 111: 5-17, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26095706

ABSTRACT

Microplastics are omnipresent in the marine environment and sediments are hypothesized to be major sinks of these plastics. Here, over 100 articles spanning the last 50 year are reviewed with following objectives: (i) to evaluate current microplastic extraction techniques, (ii) to discuss the occurrence and worldwide distribution of microplastics in sediments, and (iii) to make a comprehensive assessment of the possible adverse effects of this type of pollution to marine organisms. Based on this review we propose future research needs and conclude that there is a clear need for a standardized techniques, unified reporting units and more realistic effect assessments.


Subject(s)
Environmental Exposure , Environmental Monitoring , Geologic Sediments/analysis , Invertebrates/drug effects , Plastics/toxicity , Vertebrates/metabolism , Animals , Oceans and Seas , Particle Size , Plastics/analysis
4.
Environ Pollut ; 199: 10-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25617854

ABSTRACT

We studied the uptake of microplastics under field conditions. At six locations along the French-Belgian-Dutch coastline we collected two species of marine invertebrates representing different feeding strategies: the blue mussel Mytilus edulis (filter feeder) and the lugworm Arenicola marina (deposit feeder). Additional laboratory experiments were performed to assess possible (adverse) effects of ingestion and translocation of microplastics on the energy metabolism (cellular energy allocation) of these species. Microplastics were present in all organisms collected in the field: on average 0.2 ± 0.3 microplastics g(-1) (M. edulis) and 1.2 ± 2.8 particles g(-1) (A. marina). In a proof of principle laboratory experiment, mussels and lugworms exposed to high concentrations of polystyrene microspheres (110 particles mL(-1) seawater and 110 particles g(-1) sediment, respectively) showed no significant adverse effect on the organisms' overall energy budget. The results are discussed in the context of possible risks as a result of the possible transfer of adsorbed contaminants.


Subject(s)
Environmental Monitoring , Mytilus edulis/metabolism , Plastics/metabolism , Polychaeta/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bivalvia/metabolism , Ecosystem , Polystyrenes , Seawater , Shellfish , Water Pollutants, Chemical/analysis
5.
Environ Pollut ; 193: 65-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25005888

ABSTRACT

Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.


Subject(s)
Bivalvia/metabolism , Crassostrea/chemistry , Mytilus edulis/chemistry , Plastics/analysis , Shellfish/analysis , Water Pollutants, Chemical/analysis , Animals , Bivalvia/chemistry , Crassostrea/metabolism , Mytilus edulis/metabolism , Plastics/metabolism , Water Pollutants, Chemical/metabolism
6.
Environ Pollut ; 182: 495-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24035457

ABSTRACT

Microplastics are small plastic particles (<1 mm) originating from the degradation of larger plastic debris. These microplastics have been accumulating in the marine environment for decades and have been detected throughout the water column and in sublittoral and beach sediments worldwide. However, up to now, it has never been established whether microplastic presence in sediments is limited to accumulation hot spots such as the continental shelf, or whether they are also present in deep-sea sediments. Here we show, for the first time ever, that microplastics have indeed reached the most remote of marine environments: the deep sea. We found plastic particles sized in the micrometre range in deep-sea sediments collected at four locations representing different deep-sea habitats ranging in depth from 1100 to 5000 m. Our results demonstrate that microplastic pollution has spread throughout the world's seas and oceans, into the remote and largely unknown deep sea.


Subject(s)
Geologic Sediments/chemistry , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Water Pollution, Chemical/statistics & numerical data
7.
Mar Pollut Bull ; 73(1): 161-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23790460

ABSTRACT

A comprehensive assessment of marine litter in three environmental compartments of Belgian coastal waters was performed. Abundance, weight and composition of marine debris, including microplastics, was assessed by performing beach, sea surface and seafloor monitoring campaigns during two consecutive years. Plastic items were the dominant type of macrodebris recorded: over 95% of debris present in the three sampled marine compartments were plastic. In general, concentrations of macrodebris were quite high. Especially the number of beached debris reached very high levels: on average 6429±6767 items per 100 m were recorded. Microplastic concentrations were determined to assess overall abundance in the different marine compartments of the Belgian Continental Shelf. In terms of weight, macrodebris still dominates the pollution of beaches, but in the water column and in the seafloor microplastics appear to be of higher importance: here, microplastic weight is approximately 100 times and 400 times higher, respectively, than macrodebris weight.


Subject(s)
Environmental Monitoring , Water Pollutants/analysis , Water Pollution/statistics & numerical data , Belgium , Seawater/chemistry , Waste Products/analysis
8.
Mar Pollut Bull ; 70(1-2): 227-33, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23601693

ABSTRACT

Microplastics have been reported in marine environments worldwide. Accurate assessment of quantity and type is therefore needed. Here, we propose new techniques for extracting microplastics from sediment and invertebrate tissue. The method developed for sediments involves a volume reduction of the sample by elutriation, followed by density separation using a high density NaI solution. Comparison of this methods' efficiency to that of a widely used technique indicated that the new method has a considerably higher extraction efficiency. For fibres and granules an increase of 23% and 39% was noted, extraction efficiency of PVC increased by 100%. The second method aimed at extracting microplastics from animal tissues based on chemical digestion. Extraction of microspheres yielded high efficiencies (94-98%). For fibres, efficiencies were highly variable (0-98%), depending on polymer type. The use of these two techniques will result in a more complete assessment of marine microplastic concentrations.


Subject(s)
Aquatic Organisms/metabolism , Environmental Monitoring/methods , Geologic Sediments/chemistry , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Plastics/metabolism , Seawater/chemistry , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...