Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; : 116007, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38145828

ABSTRACT

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.

2.
Biochem Pharmacol ; 214: 115672, 2023 08.
Article in English | MEDLINE | ID: mdl-37406966

ABSTRACT

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10 nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 111 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.


Subject(s)
Vascular Endothelial Growth Factor A , Sunitinib , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Ligands , Kinetics , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
JRSM Cardiovasc Dis ; 11: 20480040221092893, 2022.
Article in English | MEDLINE | ID: mdl-35646334

ABSTRACT

Animal models are essential for assessing cardiovascular responses to novel therapeutics. Cardiovascular safety liabilities represent a leading cause of drug attrition and better preclinical measurements are essential to predict drug-related toxicities. Presently, radiotelemetric approaches recording blood pressure are routinely used in preclinical in vivo haemodynamic assessments, providing valuable information on therapy-associated cardiovascular effects. Nonetheless, this technique is chiefly limited to the monitoring of blood pressure and heart rate alone. Alongside these measurements, Doppler flowmetry can provide additional information on the vasculature by simultaneously measuring changes in blood flow in multiple different regional vascular beds. However, due to the time-consuming and expensive nature of this approach, it is not widely used in the industry. Currently, analysis of waveform data obtained from telemetry and Doppler flowmetry typically examines averages or peak values of waveforms. Subtle changes in the morphology and variability of physiological waveforms have previously been shown to be early markers of toxicity and pathology. Therefore, a detailed analysis of pressure and flowmetry waveforms could enhance the understanding of toxicological mechanisms and the ability to translate these preclinical observations to clinical outcomes. In this review, we give an overview of the different approaches to monitor the effects of drugs on cardiovascular parameters (particularly regional blood flow, heart rate and blood pressure) and suggest that further development of waveform analysis could enhance our understanding of safety pharmacology, providing valuable information without increasing the number of in vivo studies needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...