Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2521, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33947855

ABSTRACT

Anyone who has ever broken a dish or a glass knows that the resulting fragments range from roughly the size of the object all the way down to indiscernibly small pieces: typical fragment size distributions of broken brittle materials follow a power law, and therefore lack a characteristic length scale. The origin of this power-law behavior is still unclear, especially why it is such an universal feature. Here we study the explosive fragmentation of glass Prince Rupert's drops, and uncover a fundamentally different breakup mechanism. The Prince Rupert's drops explode due to their large internal stresses resulting in an exponential fragment size distribution with a well-defined fragment size. We demonstrate that generically two distinct breakup processes exist, random and hierarchical, that allows us to fully explain why fragment size distributions are power-law in most cases but exponential in others. We show experimentally that one can even break the same material in different ways to obtain either random or hierarchical breakup, giving exponential and power-law distributed fragment sizes respectively. That a random breakup process leads to well-defined fragment sizes is surprising and is potentially useful to control fragmentation of brittle solids.

2.
Materials (Basel) ; 11(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347641

ABSTRACT

Ice cream is a complex multi-phase colloidal soft-solid and its three-dimensional microstructure plays a critical role in determining the oral sensory experience or mouthfeel. Using in-line phase contrast synchrotron X-ray tomography, we capture the rapid evolution of the ice cream microstructure during heat shock conditions in situ and operando, on a time scale of minutes. The further evolution of the ice cream microstructure during storage and abuse was captured using ex situ tomography on a time scale of days. The morphology of the ice crystals and unfrozen matrix during these thermal cycles was quantified as an indicator for the texture and oral sensory perception. Our results reveal that the coarsening is due to both Ostwald ripening and physical agglomeration, enhancing our understanding of the microstructural evolution of ice cream during both manufacturing and storage. The microstructural evolution of this complex material was quantified, providing new insights into the behavior of soft-solids and semi-solids, including many foodstuffs, and invaluable data to both inform and validate models of their processing.

3.
Langmuir ; 29(47): 14356-60, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24215548

ABSTRACT

We prepared dispersions from bacterial cellulose microfibrils (CMF) of a commercial Nata de Coco source. We used an ultra-high-energy mechanical deagglomeration process that is able to disperse the CMFs from the pellicle in which they are organized in an irregular network. Because of the strong attractions between the CMFs, the dispersion remained highly heterogeneous, consisting of fiber bundles, flocs, and voids spanning tens to hundreds of micrometers depending on concentration. The size of these flocs increased with CMF concentration, the size of the bundles stayed constant, and the size of the voids decreased. The observed percolation threshold in MFC dispersions is lower than the theoretical prediction, which is accounted for by the attractive interactions in the system. Because bacterial cellulose is chemically very pure, it can be used to study the interaction of attractive and highly shape-anisotropic, semiflexible fiberlike colloidal particles.


Subject(s)
Bacteria/chemistry , Cellulose/chemistry , Microfibrils/chemistry , Colloids/chemistry , Particle Size , Surface Properties
4.
J Biomed Opt ; 16(2): 021118, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21473164

ABSTRACT

The development of methods that allow microscale studies of complex biomaterials based on their molecular composition is of great interest to a wide range of research fields. We show that stimulated Raman scattering (SRS) microscopy is an excellent analytical tool to study distributions of different biomolecules in multiphasic systems. SRS combines the label-free molecular specificity of vibrational spectroscopy with an enhanced sensitivity due to coherent excitation of molecular vibrations. Compared to previous imaging studies using coherent anti-Stokes Raman scattering microscopy, the main advantage of SRS microscopy is the absence of the unwanted nonresonant background, which translates into a superior sensitivity and undistorted vibrational spectra. We compare spectra of complex materials obtained with stimulated Raman scattering and spontaneous Raman scattering in the crowded fingerprint region.We find that, as expected, there is excellent correspondence and that the SRS spectra are free from interference from background fluorescence. In addition, we show high-resolution imaging of the distributions of selected biomolecules, such as lipids and proteins, in food products with SRS microscopy.


Subject(s)
Biopolymers/analysis , Food Analysis/instrumentation , Microscopy/instrumentation , Spectrum Analysis, Raman/instrumentation , Equipment Design , Equipment Failure Analysis , Staining and Labeling
5.
J Biomed Opt ; 15(6): 066016, 2010.
Article in English | MEDLINE | ID: mdl-21198190

ABSTRACT

The development of methods that allow microscale studies of complex biomaterials based on their molecular composition is of great interest to a wide range of research fields. We show that stimulated Raman scattering (SRS) microscopy is an excellent analytical tool to study distributions of different biomolecules in multiphasic systems. SRS combines the label-free molecular specificity of vibrational spectroscopy with an enhanced sensitivity due to coherent excitation of molecular vibrations. Compared to previous imaging studies using coherent anti-Stokes Raman scattering microscopy, the main advantage of SRS microscopy is the absence of the unwanted nonresonant background, which translates into a superior sensitivity and undistorted vibrational spectra. We compare spectra of complex materials obtained with stimulated Raman scattering and spontaneous Raman scattering in the crowded fingerprint region. We find that, as expected, there is excellent correspondence and that the SRS spectra are free from interference from background fluorescence. In addition, we show high-resolution imaging of the distributions of selected biomolecules, such as lipids and proteins, in food products with SRS microscopy.


Subject(s)
Biopolymers/analysis , Food Analysis/instrumentation , Microscopy/instrumentation , Spectrum Analysis, Raman/instrumentation , Equipment Design , Equipment Failure Analysis , Staining and Labeling
6.
Appl Spectrosc ; 61(6): 593-602, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17650369

ABSTRACT

Multilayer plastic foils are important packaging materials that are used to extend the shelf life of food products and drinks. Fourier transform infrared (FT-IR) spectroscopic imaging using attenuated total internal reflection (ATR) can be used for the identification and localization of different layers in multilayer foils. A new type of ATR crystal was used in combination with a linear array detector through which large sample areas (400 x 400 microm(2)) could be imaged with a pixel size of 1.6 microm. The method was tested on laminated plastic packing materials containing 5 to 12 layers. The results of the identification of the different materials using ATR-FT-IR were compared with differential scanning calorimetry (DSC) and the layer thickness of the individual layers measured by ATR-FT-IR was compared with polarized light microscopy (LM) and scanning electron microscopy (SEM). It has been demonstrated that individual layers with a thickness of about 3 microm could be identified in multilayer foils with a total thickness ranging from 100 to 150 microm. The results show a spatial resolution of about 4 microm (measured at wavenumbers ranging from 1000 to 1730 cm(-1)), which is about a factor of two better than can be obtained using transmission FT-IR imaging. An additional advantage of ATR is the ease of sample preparation. A good correspondence was found between visible and FT-IR images. The results of ATR-FT-IR imaging were in agreement with those obtained by LM, SEM, and DSC. ATR-FT-IR is superior to the combination of these techniques because it delivers both spatial and chemical information.


Subject(s)
Food Packaging/classification , Materials Testing/methods , Microscopy/methods , Plastics/chemistry , Spectroscopy, Fourier Transform Infrared/methods
7.
J Magn Reson ; 171(1): 157-62, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15504695

ABSTRACT

The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial resolution are critical factors in the investigation of the cooking behavior of rice kernels since time and spatial averaging may lead to erroneous results. The results are confirming the general pattern of moisture ingress that has been suspected from previous (more limited) studies. Water uptake as determined by analysis of the MRI time series recorded during cooking compares well with gravimetric studies. This allows using these real-time MRI data for developing and validating models that describe the effect of kernel microstructure on its cooking behavior.


Subject(s)
Cooking , Magnetic Resonance Imaging/methods , Oryza , Image Processing, Computer-Assisted , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...