Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 170: 112190, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31731237

ABSTRACT

Rice is the most important staple food in the world, but rice production is challenged by several biotic stress factors like viruses, bacteria, fungi and pest insects. One of the most notorious pest insects is Nilaparvata lugens, commonly known as the brown planthopper, which feeds on rice phloem sap and can cause serious damage to rice fields. In order to protect themselves, plants express a wide array of defense proteins such as ribosome-inactivating proteins (RIPs). This study shows that the expression of 'OsRIP1' is highly induced in rice plants infested with N. lugens, with transcript levels more than 100-fold upregulated in infested plants compared to non-infested plants. Furthermore, recombinant OsRIP1 was toxic for brown planthoppers when administered through liquid artificial diet. OsRIP1 inactivated insect ribosomes in vitro, suggesting that its toxicity relates to the enzymatic activity of OsRIP1. Over-expression of OsRIP1 in transgenic rice plants did not affect the performance of insects reared on these plants, most likely due to insufficient concentrations of OsRIP1 in the phloem. The data obtained in this research indicate that OsRIP1 can play a role in plant defense against herbivorous insects.


Subject(s)
Hemiptera/drug effects , Oryza/chemistry , Phytochemicals/pharmacology , Saporins/metabolism , Animals , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Saporins/chemistry , Saporins/isolation & purification
2.
Retrovirology ; 8(1): 10, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21314946

ABSTRACT

BACKGROUND: In a recent report, the carbohydrate-binding specificities of the plant lectins Galanthus nivalis (GNA) and the closely related lectin from Zea mays (GNAmaize) were determined by glycan array analysis and indicated that GNAmaize recognizes complex-type N-glycans whereas GNA has specificity towards high-mannose-type glycans. Both lectins are tetrameric proteins sharing 64% sequence similarity. RESULTS: GNAmaize appeared to be ~20- to 100-fold less inhibitory than GNA against HIV infection, syncytia formation between persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T-lymphocyte SupT1 cells, HIV-1 capture by DC-SIGN and subsequent transmission of DC-SIGN-captured virions to uninfected CD4+ T-lymphocyte cells. In contrast to GNA, which preferentially selects for virus strains with deleted high-mannose-type glycans on gp120, prolonged exposure of HIV-1 to dose-escalating concentrations of GNAmaize selected for mutant virus strains in which one complex-type glycan of gp120 was deleted. Surface Plasmon Resonance (SPR) analysis revealed that GNA and GNAmaize interact with HIV IIIB gp120 with affinity constants (KD) of 0.33 nM and 34 nM, respectively. Whereas immobilized GNA specifically binds mannose oligomers, GNAmaize selectively binds complex-type GlcNAcß1,2Man oligomers. Also, epitope mapping experiments revealed that GNA and the mannose-specific mAb 2G12 can independently bind from GNAmaize to gp120, whereas GNAmaize cannot efficiently bind to gp120 that contained prebound PHA-E (GlcNAcß1,2man specific) or SNA (NeuAcα2,6X specific). CONCLUSION: The markedly reduced anti-HIV activity of GNAmaize compared to GNA can be explained by the profound shift in glycan recognition and the disappearance of carbohydrate-binding sites in GNAmaize that have high affinity for mannose oligomers. These findings underscore the need for mannose oligomer recognition of therapeutics to be endowed with anti-HIV activity and that mannose, but not complex-type glycan binding of chemotherapeutics to gp120, may result in a pronounced neutralizing activity against the virus.


Subject(s)
Anti-HIV Agents/metabolism , Galanthus/chemistry , HIV-1/drug effects , Lectins/metabolism , Mannose/metabolism , Zea mays/chemistry , Anti-HIV Agents/isolation & purification , CD4-Positive T-Lymphocytes/virology , Cell Line , Epitope Mapping , HIV-1/growth & development , HIV-1/pathogenicity , Humans , Kinetics , Lectins/isolation & purification , Protein Binding , Protein Interaction Mapping , Surface Plasmon Resonance , Virus Replication/drug effects
3.
BMC Plant Biol ; 9: 136, 2009 Nov 23.
Article in English | MEDLINE | ID: mdl-19930663

ABSTRACT

BACKGROUND: Cloning of the Euonymus lectin led to the discovery of a novel domain that also occurs in some stress-induced plant proteins. The distribution and the diversity of proteins with an Euonymus lectin (EUL) domain were investigated using detailed analysis of sequences in publicly accessible genome and transcriptome databases. RESULTS: Comprehensive in silico analyses indicate that the recently identified Euonymus europaeus lectin domain represents a conserved structural unit of a novel family of putative carbohydrate-binding proteins, which will further be referred to as the Euonymus lectin (EUL) family. The EUL domain is widespread among plants. Analysis of retrieved sequences revealed that some sequences consist of a single EUL domain linked to an unrelated N-terminal domain whereas others comprise two in tandem arrayed EUL domains. A new classification system for these lectins is proposed based on the overall domain architecture. Evolutionary relationships among the sequences with EUL domains are discussed. CONCLUSION: The identification of the EUL family provides the first evidence for the occurrence in terrestrial plants of a highly conserved plant specific domain. The widespread distribution of the EUL domain strikingly contrasts the more limited or even narrow distribution of most other lectin domains found in plants. The apparent omnipresence of the EUL domain is indicative for a universal role of this lectin domain in plants. Although there is unambiguous evidence that several EUL domains possess carbohydrate-binding activity further research is required to corroborate the carbohydrate-binding properties of different members of the EUL family.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Evolution, Molecular , Plant Lectins/metabolism , Plant Proteins/metabolism , Plants/genetics , Antimicrobial Cationic Peptides/genetics , Computational Biology , Gene Expression Profiling , Phylogeny , Plant Lectins/genetics , Plant Proteins/genetics , Plants/metabolism , Protein Structure, Tertiary , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...