Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cancer Ther ; 18(2): 346-355, 2019 02.
Article in English | MEDLINE | ID: mdl-30425131

ABSTRACT

PIK3CA mutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used off-label for patients with PIK3CA mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus. Previously, we demonstrated that dual PI3K/mTOR inhibition could decrease proliferation, induce differentiation, and result in a treatment response in APC and PIK3CA mutant colorectal cancer. However, reactivation of AKT was identified, indicating that the majority of the benefit may be secondary to MTORC1/2 inhibition. TAK-228, an MTORC1/2 inhibitor, was compared with dual PI3K/mTOR inhibition using BEZ235 in murine colorectal cancer spheroids. A reduction in spheroid size was observed with TAK-228 and BEZ235 (-13% and -14%, respectively) compared with an increase of >200% in control (P < 0.001). These spheroids were resistant to MTORC1 inhibition. In transgenic mice possessing Pik3ca and Apc mutations, BEZ235 and TAK-228 resulted in a median reduction in colon tumor size of 19% and 20%, respectively, with control tumors having a median increase of 18% (P = 0.02 and 0.004, respectively). This response correlated with a decrease in the phosphorylation of 4EBP1 and RPS6. MTORC1/2 inhibition is sufficient to overcome resistance to everolimus and induce a treatment response in PIK3CA mutant colorectal cancers and deserves investigation in clinical trials and in future combination regimens.


Subject(s)
Benzoxazoles/administration & dosage , Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Mutation , Pyrimidines/administration & dosage , Adenomatous Polyposis Coli Protein/genetics , Animals , Benzoxazoles/pharmacology , Cell Line, Tumor , Cohort Studies , Colorectal Neoplasms/genetics , Female , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacology , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Transgenic , Pyrimidines/pharmacology , Quinolines/administration & dosage , Quinolines/pharmacology , Signal Transduction , Xenograft Model Antitumor Assays
2.
J Immunol ; 199(5): 1933-1941, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28754680

ABSTRACT

Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Dendritic Cells/immunology , Extracellular Matrix/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Versicans/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Cell Movement , Cells, Cultured , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Proteolysis , Repressor Proteins/metabolism , Tumor Microenvironment
3.
Mol Cancer Res ; 15(3): 317-327, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28184015

ABSTRACT

Therapeutic targeting of the PI3K pathway is an active area of research in multiple cancer types, including breast and endometrial cancers. This pathway is commonly altered in cancer and plays an integral role in numerous vital cellular functions. Mutations in the PIK3CA gene, resulting in a constitutively active form of PI3K, often occur in colorectal cancer, though the population of patients who would benefit from targeting this pathway has yet to be identified. In human colorectal cancers, PIK3CA mutations most commonly occur concomitantly with loss of adenomatous polyposis coli (APC). Here, treatment strategies are investigated that target the PI3K pathway in colon cancers with mutations in APC and PIK3CA Colorectal cancer spheroids with Apc and Pik3ca mutations were generated and characterized confirming that these cultures represent the tumors from which they were derived. Pan and alpha isomer-specific PI3K inhibitors did not induce a significant treatment response, whereas the dual PI3K/mTOR inhibitors BEZ235 and LY3023414 induced a dramatic treatment response through decreased cellular proliferation and increased differentiation. The significant treatment responses were confirmed in mice with Apc and Pik3ca-mutant colon cancers as measured using endoscopy with a reduction in median lumen occlusion of 53% with BEZ235 and a 24% reduction with LY3023414 compared with an increase of 53% in controls (P < 0.001 and P = 0.03, respectively). This response was also confirmed with 18F-FDG microPET/CT imaging.Implications: Spheroid models and transgenic mice suggest that dual PI3K/mTOR inhibition is a potential treatment strategy for APC and PIK3CA-mutant colorectal cancers. Thus, further clinical studies of dual PI3K/mTOR inhibitors are warranted in colorectal cancers with these mutations. Mol Cancer Res; 15(3); 1-11. ©2016 AACR.

4.
PLoS One ; 11(2): e0148730, 2016.
Article in English | MEDLINE | ID: mdl-26863299

ABSTRACT

The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (ß-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.


Subject(s)
Adenocarcinoma/genetics , Colonic Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Carcinogenesis/genetics , Class I Phosphatidylinositol 3-Kinases , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Drug Screening Assays, Antitumor , Female , Genetic Association Studies , Genetic Predisposition to Disease , Imidazoles/pharmacology , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Phosphoinositide-3 Kinase Inhibitors , Quinolines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...