Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ground Water ; 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37779366

ABSTRACT

Groundwater monitoring to measure a variety of indicator parameters including dissolved gas concentrations, total dissolved gas pressure (TDGP), and redox indicators is commonly used to evaluate the impacts of gas migration (GM) from energy development in shallow aquifer systems. However, these parameters can be challenging to interpret due to complex free-phase gas source architecture, multicomponent partitioning, and biogeochemical reactions. A series of numerical simulations using a gas flow model and a reactive transport model were conducted to delineate the anticipated evolution of indicator parameters following GM in an aquifer under a variety of physical and biogeochemical conditions. The simulations illustrate how multicomponent mass transfer processes and biogeochemical reactions create unexpected spatial and temporal variations in several analytes. The results indicate that care must be taken when interpreting measured indicator parameters including dissolved hydrocarbon concentrations and TDGP, as the presence of dissolved gases in background groundwater and biogeochemical processes can cause potentially misleading conclusions about the impact of GM. Based on the consideration of multicomponent gas partitioning in this study, it is suggested that dissolved background gases such as N2 and Ar can provide valuable insights on the presence, longevity and fate of free-phase natural gas in aquifer systems. Overall, these results contribute to developing a better understanding of indicators for GM in groundwater, which will aid the planning of future monitoring networks and subsequent data interpretation.

2.
J Environ Manage ; 344: 118780, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37611345

ABSTRACT

Methane (CH4) emissions from landfills are a major contributor to global greenhouse gas emissions. Compost-based biocovers offer a viable approach to reduce CH4 emissions from landfills; however, the effectiveness in climates with varying temperatures is not well understood. The methane removal performances of two compost-based biocover materials (food and yard waste compost) were examined under different temperature conditions using laboratory column experiments. A reactive transport model was used to simulate the experimental results to develop a better quantitative understanding of the effect of temperature on overall methane removal efficiency. As expected, experimental results indicated that the oxidation rate was influenced by temperature, as it was reduced when the temperature decreased from 22 °C to 8 °C. However, some oxidation was observed at a lower temperature, which was confirmed by CO2 concentrations above the initial level and the observed temperatures above the exposure temperature along the height of biocover column. Furthermore, results showed that when the compost-based materials were subjected to 8 °C and then increased to 22 °C, methane oxidation within the material recovered quickly and returned to similar oxidation rates as observed before the temperature was reduced, suggesting that compost-based biocovers may not be affected by cyclic temperature variations when used in colder climates. Methane oxidation capacity was limited by the maximum oxidation rate, the biocover porosity, and the gas saturation profile that affects residence time and overall methane oxidation in the columns. The model results show that the CH4 oxidation rate was reduced by one order of magnitude when the temperature decreased from 22 °C to 8 °C. Therefore, the calculated Q10 values were 4.19 and 5.18 for the food and yard waste compost, respectively. Overall, compost-based landfill biocovers, such as food and yard waste compost, are capable of mitigate CH4 emissions from old and small landfills under different temperature conditions.


Subject(s)
Composting , Temperature , Climate , Cold Climate , Methane
3.
J Contam Hydrol ; 247: 103988, 2022 05.
Article in English | MEDLINE | ID: mdl-35303484

ABSTRACT

With growing global use of methanol as a fuel additive and extensive use in other industrial processes, there is the potential for unintended release and spills into soils and aquifers. In these subsurface systems it is likely that methanol will be readily biodegraded; however, degradation may lead to the production of by-products, most importantly methane possibly resulting in explosion hazards and volatile fatty acids (VFAs) causing aesthetic issues for groundwater. In this study, the formation of these potentially harmful by-products due to methanol biodegradation was investigated in natural sand and silt sediments using microcosms inoculated with neat methanol (100%) ranging in concentration from 100 to 100,000 ppm. To assess the rate of degradation and by-product formation, water and headspace samples were collected and analyzed for methanol, volatile fatty acids (VFAs, including acetic, butyric, and propionic acid), cation (metal) concentrations (Al, Ca, Fe, K, Mg, Mn and Na), microbial community structure and activity, headspace pressure, gas composition (CH4, CO2, O2 and N2), and compound specific isotopes. Methanol was completely biodegraded in sand and silt up to concentrations of 1000 ppm and 10,000 ppm, respectively. Degradation was initially aerobic, consuming oxygen (O2) and producing carbon dioxide (CO2). When O2 was depleted, the microcosms became anaerobic and a lag in methanol degradation occurred (ranging from 41 to 87 days). Following this lag, methanol was preferentially degraded to acetate, coupled with CO2 reduction. Microcosms with high methanol concentrations (10,000 ppm) were driven further down the redox ladder and exhibited fermentation, leading to concurrent acetate and methane (CH4) generation. In all cases acetate was an intermediate product, further degraded to the final products of CH4 and CO2. Carbonates present in the microcosm sediments helped buffer VFA acidification and replenished CO2. Methane generation in the anaerobic microcosms was short-lived, but temporarily reached high rates up to 13 mg kg-1 day-1. Under the conditions of these experiments, methanol degradation occurred rapidly, after initial lag periods, which were a function of methanol concentration and sediment type. Our experiment also showed that methanol degradation and associated methane production can occur in a stepwise fashion.


Subject(s)
Groundwater , Methanol , Acetates , Carbon Dioxide/analysis , Fatty Acids, Volatile , Groundwater/chemistry , Methane/metabolism , Sand
5.
Sci Total Environ ; 779: 146234, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34030233

ABSTRACT

Releases of natural gas into groundwater from oil and gas exploration, production, or storage (i.e., "stray gas") can pose a risk to groundwater users and landowners in the form of a fire or explosive hazard. The acute nature of stray gas risk differs from the long-term health risks posed by the ingestion or inhalation of other petroleum hydrocarbons (e.g., benzene). Stray gas also exhibits different fate and transport behaviors in the environment from other hydrocarbon contaminants, including the potential for rapid and extensive transport of free-phase gas through preferential pathways, and the resulting variable and discontinuous spatial distribution of free and dissolved gas phases. While there is extensive guidance on response actions for releases of other hydrocarbons such as benzene, there are relatively few examples available in the technical literature that discuss appropriate response measures for the investigation and remediation of stray gas impacts. This paper describes key considerations in the physical, chemical, and hydrogeological characteristics of stray gas releases and implications for the improved investigation and mitigation of associated risks.

6.
J Contam Hydrol ; 238: 103771, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33497915

ABSTRACT

A viable means of quantifying the rate of natural source zone depletion (NSZD) at hydrocarbon contaminated sites is by the measurement of carbon dioxide (CO2) and methane (CH4) effluxes at the surface. This methodology assumes that gas effluxes are reflective of actual contaminant degradation rates in the subsurface, which is only accurate for quasi-steady state conditions. However, in reality, subsurface systems are highly dynamic, often resulting in fluctuations of the water table. To quantify the effects of water table fluctuations on NSZD rates, a simulated biodiesel spill in a 400 cm long, 100 cm wide and 150 cm tall sandtank was subjected to lowering and raising the water table, while soil-gas chemistry and surface CO2 and CH4 effluxes were measured. Results show that water table fluctuations have both short-term (perceived) and long-term (actual) effects on NSZD rates, interpreted using surface efflux measurements. When the water table was lowered, surface effluxes immediately increased up to 3 and 344 times higher than baseline for CO2 and CH4 effluxes, respectively, due to the liberation of anaerobically produced gas accumulated below the water table. After this immediate release, the system then reached quasi-steady state conditions 1.4 to 1.6 times higher for CO2 than baseline conditions, attributed to increased aerobic degradation in the broadened and exposed smear zone. When the water table was raised, quasi-steady state CO2 and CH4 effluxes declined to values of 0.9 and 0.4 times baseline effluxes, respectively, implying that contaminant degradation rates were reduced due to submergence of the smear zone. The findings of this study show that the dynamic effects of water table fluctuations and redistribution of the contaminants affect surface effluxes as well as short-term (perceived) and long-term (actual) contaminant degradation rates. Therefore, water table fluctuations need to be considered when quantifying NSZD at contaminated sites using sparse temporal rate measurements to estimate NSZD rates for extended periods of time (e.g., annual rates).


Subject(s)
Groundwater , Carbon Dioxide/analysis , Hydrocarbons , Methane , Soil
7.
Sci Total Environ ; 749: 141459, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370906

ABSTRACT

Petroleum resource development has generated a global legacy of millions of active and decommissioned energy wells. Associated with this legacy are concerns about wellbore integrity failure and leakage of fugitive gas into groundwater and atmosphere. The fate of fugitive gas in the shallow subsurface is controlled by sediment heterogeneity, hydrostratigraphy and hydraulic connectivity. We characterized the shallow subsurface at a site in northeastern British Columbia, Canada; a region of extensive petroleum resource development. We collected 13 core profiles, 9 cone-penetrometer profiles, 58 sediment samples and 4 electrical resistivity profiles. At the site, a ~ 12 m thick layer of low-permeability diamict (10-8 m/s) overlays a more permeable (10-6 - 10-4 m/s) but highly heterogeneous sequence of glacigenic sand, clay and silt. We develop a conceptual hydrostratigraphic model for fluid flow in this system in the context of fugitive-gas migration. Driven by buoyancy forces, free-phase gas will move upward through discontinuous permeable zones within the Quaternary sediments, until it encounters lower permeability interbeds where it will pool, flow laterally or become trapped and dissolve into flowing groundwater. The vertical extent of gas migration will be significantly limited by the relatively continuous overlying diamict, a feature common across the Western Canadian Sedimentary Basin. However, intra-till lenses observed embedded within the diamict may provide pathways for gas to move vertically towards ground surface and into the atmosphere. This study provides one of the few investigations examining geological and hydrogeological heterogeneity in the shallow subsurface at scales relevant to gas migration. For glaciated regions with similar surficial geology, such as Western Canada Sedimentary Basin, gas that is released into the subsurface from an energy wellbore, below a surface diamict, will likely migrate laterally away from the wellbore, and be inhibited from reaching ground surface and emitting to atmosphere.

8.
Environ Sci Technol ; 54(19): 12493-12501, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32870667

ABSTRACT

Petroleum resource development is a significant contributor of greenhouse gas emissions to the atmosphere. A potential source of emissions may result from stray gas migration. However, its contribution to overall emissions and potential groundwater contamination is unknown, and quantification of flow and dissolution of stray gas is required. The environmental expression of stray gas was investigated using an intermediate-scale (150 × 150 × 2 cm3), two-dimensional flow cell packed in both homogeneous and heterogeneous sand configurations allowing for visualization and measurement of gas movement, collection of aqueous samples, and real-time measurement of gas fluxes escaping the surface of the sand. Results show that gas is transported to the surface of the system via varying dominant discontinuous conduits for flow dictated by geology, leading to surface expression that can be greater or less than the leakage rate of gas. This suggests that surface expression is not directly indicative of the expanse and magnitude of stray gas migration leaks. It was found that 35-39% of the methane was released to the aqueous phase and 61-65% to the atmosphere. The results underscore that subsurface characteristics and gas flow are the key drivers for the overall expression of stray gas in unconsolidated sand aquifers.


Subject(s)
Greenhouse Gases , Groundwater , Environmental Monitoring , Laboratories , Methane/analysis
9.
Environ Sci Technol ; 54(10): 6299-6307, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32343895

ABSTRACT

Stray gas migration as a result of hydrocarbon extraction has caused environmental concern and is receiving widespread attention. Natural gas migration in the subsurface can have environmental implications when gas components (e.g., methane, longer-chained hydrocarbons) dissolve into shallow groundwater or pass through groundwater systems to the atmosphere. Because of the complexity of the subsurface systems and the parameters affecting stray gas migration, systematic quantification is difficult, particularly in field studies. To focus on key processes of gas migration, laboratory experiments offer a controlled environment to collect data which can be applied to field and modeling efforts. In this study, methane was injected into an intermediate-scale (150 × 150 × 2 cm3) two-dimensional flow cell packed with saturated homogeneous or heterogeneous unconsolidated sands. The impact of active methane leakage versus stopping of leakage was investigated. High-resolution, visualization techniques coupled with high-frequency water sampling at multiple depth-discrete intervals allowed for understanding of coupled methane migration and mass transfer. Results show that methane dissolution is affected by heterogeneity, active versus inactive leakage, and multicomponent mass transfer, prolonging the longevity of both free- and dissolved-phase methane in the subsurface. Findings highlight the importance of considering geology, hydrogeologic conditions, and multicomponent mass transfer in gas migration systems at the field scale.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , Environmental Monitoring , Methane/analysis , Natural Gas/analysis , Oil and Gas Fields , Solubility
10.
Water Res ; 170: 115327, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31810031

ABSTRACT

Releases of greenhouse gases (GHGs) from the subsurface can result in atmospheric emissions and the degradation of water quality. These effects require attention in today's changing climate to properly quantify emissions, reduce risk and inform sound policy decisions. Flowing subsurface GHGs, including methane and carbon dioxide, present a risk in the form of two environmental expressions: i) to the atmosphere (surface expression) and ii) to shallow groundwater (aqueous expression). Results based on high-resolution observations in an analog experimental system and analytical modelling show that these expressions depend on the rate of gas flow and the velocity of the flowing groundwater. In deeper systems, the emission of flowing subsurface GHGs could be significantly limited by dissolution into groundwater, adversely impacting water resources without surficial evidence of an underlying issue. This work shows that mass transfer in the subsurface must be considered to quantify, monitor and mitigate risks of leaking subsurface GHGs.


Subject(s)
Greenhouse Gases , Carbon Dioxide , Greenhouse Effect , Methane , Nitrous Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...