Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0118182, 2015.
Article in English | MEDLINE | ID: mdl-25826708

ABSTRACT

Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.


Subject(s)
Automation, Laboratory , Polymerase Chain Reaction/methods , Humans , Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
2.
PLoS One ; 8(7): e68988, 2013.
Article in English | MEDLINE | ID: mdl-23894387

ABSTRACT

Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing/instrumentation , Microfluidic Analytical Techniques/instrumentation , Sequence Analysis, DNA/instrumentation , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Genome, Human/genetics , Humans , Systems Integration
3.
J Lab Autom ; 16(6): 405-14, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22093297

ABSTRACT

Next-generation sequencing (NGS) technology is a promising tool for identifying and characterizing unknown pathogens, but its usefulness in time-critical biodefense and public health applications is currently limited by the lack of fast, efficient, and reliable automated DNA sample preparation methods. To address this limitation, we are developing a digital microfluidic (DMF) platform to function as a fluid distribution hub, enabling the integration of multiple subsystem modules into an automated NGS library sample preparation system. A novel capillary interface enables highly repeatable transfer of liquid between the DMF device and the external fluidic modules, allowing both continuous-flow and droplet-based sample manipulations to be performed in one integrated system. Here, we highlight the utility of the DMF hub platform and capillary interface for automating two key operations in the NGS sample preparation workflow. Using an in-line contactless conductivity detector in conjunction with the capillary interface, we demonstrate closed-loop automated fraction collection of target analytes from a continuous-flow sample stream into droplets on the DMF device. Buffer exchange and sample cleanup, the most repeated steps in NGS library preparation, are also demonstrated on the DMF platform using a magnetic bead assay and achieving an average DNA recovery efficiency of 80%±4.8%.


Subject(s)
DNA/analysis , Infections/genetics , Automation, Laboratory , Conductometry , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Humans , Infections/diagnosis , Microfluidic Analytical Techniques , Reproducibility of Results
4.
Electrophoresis ; 31(15): 2632-40, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20665921

ABSTRACT

Field-deployable detection technologies in the nation's water supplies have become a high priority in recent years. The unattended water sensor is presented which employs microfluidic chip-based gel electrophoresis for monitoring proteinaceous analytes in a small integrated sensor platform. The instrument collects samples directly from a domestic water flow. The sample is then processed in an automated microfluidic module using in-house designed fittings, microfluidic pumps and valves prior to analysis via Sandia's microChemLab module, which couples chip-based electrophoresis separations with sensitive LIF detection. The system is controlled using LabVIEW software to analyze water samples about every 12 min. The sample preparation, detection and data analysis has all been fully automated. Pressure transducers and a positive control verify correct operation of the system, remotely. A two-color LIF detector with internal standards allows corrections to migration time to account for ambient temperature changes. The initial unattended water sensor prototype is configured to detect protein biotoxins such as ricin as a first step toward a total bioanalysis capability based on protein profiling. The system has undergone significant testing at two water utilities. The design and optimization of the sample preparation train is presented with results from both laboratory and field testing.


Subject(s)
Electrophoresis, Microchip/instrumentation , Proteins/isolation & purification , Toxins, Biological/isolation & purification , Water/analysis , Animals , Chemical Warfare Agents/isolation & purification , Electrophoresis, Microchip/methods , Equipment Design , Ricin/isolation & purification
5.
Anal Chem ; 79(15): 5763-70, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17591754

ABSTRACT

For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.


Subject(s)
Aerosols/chemistry , Biosensing Techniques/methods , Microbiological Techniques/methods , Microfluidics/methods , Proteins/chemistry , Spores, Bacterial/isolation & purification , Bacillus anthracis/cytology , Bacillus anthracis/immunology , Bacillus anthracis/isolation & purification , Bacillus subtilis/cytology , Bacillus subtilis/immunology , Bacillus subtilis/isolation & purification , Biosensing Techniques/instrumentation , Chromatography, Gel , Electrophoresis , Fluorescent Dyes/chemistry , Microbiological Techniques/instrumentation , Microfluidics/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Spores, Bacterial/cytology , Spores, Bacterial/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...