Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 309(2): L175-87, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25979079

ABSTRACT

The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.


Subject(s)
Electronic Nicotine Delivery Systems/adverse effects , Endothelium, Vascular/drug effects , Nicotine/adverse effects , Nicotinic Agonists/adverse effects , Oxidative Stress/drug effects , Pneumonia/pathology , Animals , Capillary Permeability/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Ceramides/metabolism , Electric Impedance , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Gas Chromatography-Mass Spectrometry , Humans , Immunoblotting , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Pneumonia/chemically induced , Pneumonia/metabolism , Rats , Signal Transduction/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sphingosine/analogs & derivatives , Sphingosine/metabolism
2.
Stem Cells ; 33(2): 468-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25329668

ABSTRACT

OBJECTIVE: Bone marrow-derived hematopoietic stem and progenitor cells (HSC/HPC) are critical to homeostasis and tissue repair. The aims of this study were to delineate the myelotoxicity of cigarette smoking (CS) in a murine model, to explore human adipose-derived stem cells (hASC) as a novel approach to mitigate this toxicity, and to identify key mediating factors for ASC activities. METHODS: C57BL/6 mice were exposed to CS with or without i.v. injection of regular or siRNA-transfected hASC. For in vitro experiments, cigarette smoke extract was used to mimic the toxicity of CS exposure. Analysis of bone marrow HPC was performed both by flow cytometry and colony-forming unit assays. RESULTS: In this study, we demonstrate that as few as 3 days of CS exposure results in marked cycling arrest and diminished clonogenic capacity of HPC, followed by depletion of phenotypically defined HSC/HPC. Intravenous injection of hASC substantially ameliorated both acute and chronic CS-induced myelosuppression. This effect was specifically dependent on the anti-inflammatory factor TSG-6, which is induced from xenografted hASC, primarily located in the lung and capable of responding to host inflammatory signals. Gene expression analysis within bone marrow HSC/HPC revealed several specific signaling molecules altered by CS and normalized by hASC. CONCLUSION: Our results suggest that systemic administration of hASC or TSG-6 may be novel approaches to reverse CS-induced myelosuppression.


Subject(s)
Adipose Tissue/metabolism , Cell Adhesion Molecules/metabolism , Myelopoiesis , Smoking/adverse effects , Stem Cell Transplantation , Stem Cells/metabolism , Adipose Tissue/pathology , Animals , Cell Adhesion Molecules/pharmacology , Disease Models, Animal , Female , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Smoking/pathology , Stem Cells/pathology
3.
Am J Respir Cell Mol Biol ; 50(3): 513-25, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24079644

ABSTRACT

Prolonged exposure to cigarette smoking is the main risk factor for emphysema, a component of chronic obstructive pulmonary diseases (COPDs) characterized by destruction of alveolar walls. Moreover, smoking is associated with pulmonary artery remodeling and pulmonary hypertension, even in the absence of COPD, through as yet unexplained mechanisms. In murine models, elevations of intra- and paracellular ceramides in response to smoking have been implicated in the induction of lung endothelial cell apoptosis, but the role of ceramides in human cell counterparts is yet unknown. We modeled paracrine increases (outside-in) of palmitoyl ceramide (Cer16) in primary human lung microvascular cells. In naive cells, isolated from nonsmokers, Cer16 significantly reduced cellular proliferation and induced caspase-independent apoptosis via mitochondrial membrane depolarization, apoptosis-inducing factor translocation, and poly(ADP-ribose) polymerase cleavage. In these cells, caspase-3 was inhibited by ceramide-induced Akt phosphorylation, and by the induction of autophagic microtubule-associated protein-1 light-chain 3 lipidation. In contrast, cells isolated from smokers exhibited increased baseline proliferative features associated with lack of p16(INK4a) expression and Akt hyperphosphorylation. These cells were resistant to Cer16-induced apoptosis, despite presence of both endoplasmic reticulum stress response and mitochondrial membrane depolarization. In cells from smokers, the prominent up-regulation of Akt pathways inhibited ceramide-triggered apoptosis, and was associated with elevated sphingosine and high-mobility group box 1, skewing the cell's response toward autophagy and survival. In conclusion, the cell responses to ceramide are modulated by an intricate cross-talk between Akt signaling and sphingolipid metabolites, and profoundly modified by previous cigarette smoke exposure, which selects for an apoptosis-resistant phenotype.


Subject(s)
Apoptosis/drug effects , Ceramides/toxicity , Endothelial Cells/drug effects , Lung/blood supply , Palmitic Acids/toxicity , Smoke/adverse effects , Smoking/adverse effects , Stress, Physiological/drug effects , Adaptation, Physiological , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Endothelial Cells/pathology , HMGB1 Protein/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Paracrine Communication/drug effects , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Time Factors
4.
PLoS One ; 8(5): e62968, 2013.
Article in English | MEDLINE | ID: mdl-23690971

ABSTRACT

Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. We now show that C24- and C16-ceramides are the most abundant lung ceramide species, paralleled by high expression of their synthetic enzymes, ceramide synthase 2 (CerS2) and CerS5, respectively. Furthermore, the ceramide species synthesis in the lung is homeostatically regulated, since mice lacking very long acyl chain C24-ceramides due to genetic deficiency of CerS2 displayed a ten-fold increase in C16-ceramides and C16-dihydroceramides along with elevation of acid sphingomyelinase and CerS5 activities. Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.


Subject(s)
Gene Expression Regulation, Enzymologic , Lung/cytology , Lung/enzymology , Membrane Proteins/genetics , Sphingosine N-Acyltransferase/genetics , Tumor Suppressor Proteins/genetics , Animals , Cell Line , Ceramides/metabolism , Female , Homeostasis , Humans , Lung/metabolism , Lung/physiology , Male , Membrane Proteins/deficiency , Mice , Pulmonary Alveoli/cytology , Pulmonary Alveoli/enzymology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/physiology , Sphingosine N-Acyltransferase/deficiency , Tumor Suppressor Proteins/deficiency
5.
J Immunol ; 190(5): 2447-54, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23355733

ABSTRACT

Previous studies have established that pro-oxidative stressors suppress host immunity because of their ability to generate oxidized lipids with platelet-activating factor receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of PAF in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R agonists and PAF-R-dependent inhibition of contact hypersensitivity (CHS) reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that cyclooxygenase-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS exposure induced a significant increase in the expression of the regulatory T cell reporter gene in Foxp3(EGFP) mice but not in Foxp3(EGFP) mice on a PAF-R-deficient background. Finally, regulatory T cell depletion via anti-CD25 Abs blocked CS-mediated inhibition of CHS, indicating the potential involvement of regulatory T cells in CS-mediated systemic immunosuppression. These studies provide the first evidence, to our knowledge, that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation.


Subject(s)
Dermatitis, Contact/metabolism , Glycerylphosphorylcholine/metabolism , Nicotiana/adverse effects , Platelet Activating Factor/metabolism , Platelet Membrane Glycoproteins/agonists , Receptors, G-Protein-Coupled/agonists , Smoke/adverse effects , Animals , Antioxidants/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dinitrofluorobenzene , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Glycerylphosphorylcholine/immunology , Hydrolases/metabolism , Immunosuppression Therapy , Lipid Peroxidation/drug effects , Lymphocyte Depletion , Mice , Mice, Transgenic , Platelet Activating Factor/genetics , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
6.
Am J Respir Cell Mol Biol ; 48(1): 87-93, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23024063

ABSTRACT

Key host responses to the stress induced by environmental exposure to cigarette smoke (CS) are responsible for initiating pathogenic effects that may culminate in emphysema development. CS increases lung ceramides, sphingolipids involved in oxidative stress, structural alveolar cell apoptosis, and inhibition of apoptotic cell clearance by alveolar macrophages, leading to the development of emphysema-like pathology. RTP801, a hypoxia and oxidative stress sensor, is also increased by CS, and has been recently implicated in both apoptosis and inflammation. We investigated whether inductions of ceramide and RTP801 are mechanistically linked, and evaluated their relative importance in lung cell apoptosis and airspace enlargement in vivo. As reported, direct lung instillation of either RTP801 expression plasmid or ceramides in mice triggered alveolar cell apoptosis and oxidative stress. RTP801 overexpression up-regulated lung ceramide levels 2.6-fold. In turn, instillation of lung ceramides doubled the lung content of RTP801. Cell sorting after lung tissue dissociation into single-cell suspension showed that ceramide triggers both endothelial and epithelial cell apoptosis in vivo. Interestingly, mice lacking rtp801 were protected against ceramide-induced apoptosis of epithelial type II cells, but not type I or endothelial cells. Furthermore, rtp801-null mice were protected from ceramide-induced alveolar enlargement, and exhibited improved static lung compliance compared with wild-type mice. In conclusion, ceramide and RTP801 participate in alveolar cell apoptosis through a process of mutual up-regulation, which may result in self-amplification loops, leading to alveolar damage.


Subject(s)
Apoptosis/physiology , Ceramides/physiology , DNA-Binding Proteins/physiology , Lung/pathology , Lung/physiopathology , Transcription Factors/physiology , Adaptor Proteins, Signal Transducing , Animals , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Emphysema/etiology , Emphysema/pathology , Emphysema/physiopathology , Emphysema/prevention & control , Endothelial Cells/pathology , Endothelial Cells/physiology , Epithelial Cells/pathology , Epithelial Cells/physiology , Female , Lung Compliance/physiology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Smoking/adverse effects , Smoking/pathology , Smoking/physiopathology , Transcription Factors/deficiency , Transcription Factors/genetics
7.
Am J Respir Crit Care Med ; 185(9): 965-80, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22383500

ABSTRACT

RATIONALE: 17ß-Estradiol (E2) attenuates hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension (HPH) through an unknown mechanism that may involve estrogen receptors (ER) or E2 conversion to catecholestradiols and methoxyestradiols with previously unrecognized effects on cardiopulmonary vascular remodeling. OBJECTIVES: To determine the mechanism by which E2 exerts protective effects in HPH. METHODS: Male rats were exposed to hypobaric hypoxia while treated with E2 (75 µg/kg/d) or vehicle. Subgroups were cotreated with pharmacologic ER-antagonist or with inhibitors of E2-metabolite conversion. Complementary studies were performed in rats cotreated with selective ERα- or ERß-antagonist. Hemodynamic and pulmonary artery (PA) and right ventricular (RV) remodeling parameters, including cell proliferation, cell cycle, and autophagy, were measured in vivo and in cultured primary rat PA endothelial cells. MEASUREMENTS AND MAIN RESULTS: E2 significantly attenuated HPH endpoints. Hypoxia increased ERß but not ERα lung vascular expression. Co-treatment with nonselective ER inhibitor or ERα-specific antagonist rendered hypoxic animals resistant to the beneficial effects of E2 on cardiopulmonary hemodynamics, whereas ERα- and ERß-specific antagonists opposed the remodeling effects of E2. In contrast, inhibition of E2-metabolite conversion did not abolish E2 protection. E2-treated hypoxic animals exhibited reduced ERK1/2 activation and increased expression of cell-cycle inhibitor p27(Kip1) in lungs and RV, with up-regulation of lung autophagy. E2-induced signaling was recapitulated in hypoxic but not normoxic endothelial cells, and was associated with decreased vascular endothelial growth factor secretion and cell proliferation. CONCLUSIONS: E2 attenuates hemodynamic and remodeling parameters in HPH in an ER-dependent manner, through direct antiproliferative mechanisms on vascular cells, which may provide novel nonhormonal therapeutic targets for HPH.


Subject(s)
Estradiol/pharmacology , Hypertension, Pulmonary/drug therapy , Hypoxia/complications , Receptors, Estrogen/drug effects , Airway Remodeling/drug effects , Airway Remodeling/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiac Output/drug effects , Cardiac Output/physiology , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/physiology , Estradiol/analogs & derivatives , Estradiol/therapeutic use , Estrogen Antagonists/pharmacology , Fulvestrant , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypoxia/drug therapy , Hypoxia/physiopathology , Lung/blood supply , Lung/physiopathology , Male , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/physiology , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology
8.
Mol Med ; 18: 445-54, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22245800

ABSTRACT

α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.


Subject(s)
Caspase 3/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/metabolism , alpha 1-Antitrypsin Deficiency/metabolism , Adult , Aged , Animals , Caspase 6/pharmacology , Caspase 7/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Middle Aged
9.
J Biol Chem ; 286(44): 38069-38078, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21914808

ABSTRACT

To understand the mechanisms of ceramide-based responses to hypoxia, we performed a mass spectrometry-based survey of ceramide species elicited by a wide range of hypoxic conditions (0.2-5% oxygen). We describe a rapid, time-dependent, marked up-regulation of dihydroceramides (DHCs) in mammalian cells and in the lungs of hypoxic rats. The increase affected all DHC species and was proportional with the depth and duration of hypoxia, ranging from 2- (1 h) to 10-fold (24 h), with complete return to normal after 1 h of reoxygenation at the expense of increased ceramides. We demonstrate that a DHC-based response to hypoxia occurs in a hypoxia-inducible factor-independent fashion and is catalyzed by the DHC desaturase (DEGS) in the de novo ceramide pathway. Both the impact of hypoxia on DHC molecular species and its inhibitory effect on cell proliferation were reproduced by knockdown of DEGS1 or DEGS2 by siRNA during normoxia. Conversely, overexpression of DEGS1 or DEGS2 attenuated the DHC accumulation and increased cell proliferation during hypoxia. Based on the amplitude and kinetics of DHC accumulation, the enzymatic desaturation of DHCs fulfills the criteria of an oxygen sensor across physiological hypoxic conditions, regulating the balance between biologically active components of ceramide metabolism.


Subject(s)
Ceramides/pharmacology , Hypoxia , Oxidoreductases/chemistry , Animals , Biosensing Techniques , Cell Line, Tumor , Cell Proliferation , Ceramides/chemistry , Dose-Response Relationship, Drug , Humans , Kinetics , Male , Mass Spectrometry/methods , Mice , Oxygen/chemistry , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
10.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L836-46, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21873444

ABSTRACT

The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione modulators or by inhibitors of neutral sphingomyelinase, p38 MAPK, JNK, and Rho kinase. Amelioration of endothelial permeability may alleviate lung and systemic vascular dysfunction associated with smoking-related chronic obstructive lung diseases.


Subject(s)
Ceramides/metabolism , Endothelium/drug effects , Lung/pathology , Nicotiana/adverse effects , Oxidative Stress , Smoke/adverse effects , Smoking/adverse effects , Acetylcysteine/pharmacology , Animals , Caspase Inhibitors , Caspases/metabolism , Catalase/pharmacology , Cells, Cultured , Ceramides/pharmacology , Cytoskeleton/metabolism , Electric Impedance , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Humans , Lung/physiopathology , MAP Kinase Signaling System , Male , Mice , Mice, Inbred DBA , Mitogen-Activated Protein Kinases/metabolism , Oligopeptides/pharmacology , Oxidants/pharmacology , Permeability/drug effects , Primary Cell Culture , Rats , Rats, Sprague-Dawley
11.
Am J Respir Crit Care Med ; 183(2): 215-25, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20709815

ABSTRACT

RATIONALE: Adipose-derived stem cells express multiple growth factors that inhibit endothelial cell apoptosis, and demonstrate substantial pulmonary trapping after intravascular delivery. OBJECTIVES: We hypothesized that adipose stem cells would ameliorate chronic lung injury associated with endothelial cell apoptosis, such as that occurring in emphysema. METHODS: Therapeutic effects of systemically delivered human or mouse adult adipose stem cells were evaluated in murine models of emphysema induced by chronic exposure to cigarette smoke or by inhibition of vascular endothelial growth factor receptors. MEASUREMENTS AND MAIN RESULTS: Adipose stem cells were detectable in the parenchyma and large airways of lungs up to 21 days after injection. Adipose stem cell treatment was associated with reduced inflammatory infiltration in response to cigarette smoke exposure, and markedly decreased lung cell death and airspace enlargement in both models of emphysema. Remarkably, therapeutic results of adipose stem cells extended beyond lung protection by rescuing the suppressive effects of cigarette smoke on bone marrow hematopoietic progenitor cell function, and by restoring weight loss sustained by mice during cigarette smoke exposure. Pulmonary vascular protective effects of adipose stem cells were recapitulated by application of cell-free conditioned medium, which improved lung endothelial cell repair and recovery in a wound injury repair model and antagonized effects of cigarette smoke in vitro. CONCLUSIONS: These results suggest a useful therapeutic effect of adipose stem cells on both lung and systemic injury induced by cigarette smoke, and implicate a lung vascular protective function of adipose stem cell derived paracrine factors.


Subject(s)
Adipose Tissue/cytology , Adult Stem Cells/transplantation , Lung Injury/therapy , Pulmonary Emphysema/therapy , Smoking/adverse effects , Stem Cell Transplantation/methods , Adipose Tissue/transplantation , Animals , Apoptosis , Blotting, Western , Cell Culture Techniques , Disease Models, Animal , Female , Flow Cytometry , Humans , Inflammation/physiopathology , Inflammation/prevention & control , Lung Injury/etiology , Lung Injury/physiopathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/physiopathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/physiopathology , Transplantation, Heterologous/methods , Transplantation, Homologous/methods , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...