Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(11): 11793-807, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410104

ABSTRACT

We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match.

2.
Opt Express ; 24(5): 4698-4713, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092299

ABSTRACT

We present a comprehensive study of uni-travelling carrier photodiode impedance and frequency photo-response supported by measurements up to 110 GHz. The results of this investigation provide valuable new information for the optimisation of the coupling efficiency between UTC-PDs and THz antennas. We show that the measured impedance cannot be explained employing the standard junction-capacitance/series-resistance concept and propose a new model for the observed effects, which exhibits good agreement with the experimental data. The achieved knowledge of the photodiode impedance will allow the absolute level of power emitted by antenna integrated UTCs to be predicted and ultimately maximised.

3.
Opt Lett ; 40(15): 3655-8, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26258381

ABSTRACT

We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

4.
Opt Express ; 22(19): 23465-72, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321815

ABSTRACT

We experimentally demonstrate photonic generation of a multichannel THz wireless signal at carrier frequency 200 GHz, with data rate up to 75 Gbps in QPSK modulation format, using an optical heterodyne technique and digital coherent detection. BER measurements were carried out for three subcarriers each modulated with 5 Gbaud QPSK or for two subcarriers modulated with 10 Gbaud QPSK, giving a total speed of 30 Gbps or 40 Gbps, respectively. The system evaluation was also performed with three subcarriers modulated with 12.5 Gbaud QPSK (75 Gbps total) without and with 40 km fibre transmission. The proposed system enhances the capacity of high-speed THz wireless transmission by using spectrally efficient modulated subcarriers spaced at the baud rate. This approach increases the overall transmission capacity and reduces the bandwidth requirement for electronic devices.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Devices , Photons , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design
5.
Opt Express ; 22(24): 29404-12, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606875

ABSTRACT

A monolithically integrated photonic source for tuneable mm-wave signal generation has been fabricated. The source consists of 14 active components, i.e. semiconductor lasers, amplifiers and photodetectors, all integrated on a 3 mm(2) InP chip. Heterodyne signals in the range between 85 GHz and 120 GHz with up to -10 dBm output power have been successfully generated. By optically injection locking the integrated lasers to an external optical comb source, high-spectral-purity signals at frequencies >100 GHz have been generated, with phase noise spectral density below -90 dBc/Hz being achieved at offsets from the carrier greater than 10 kHz.


Subject(s)
Photons , Signal Processing, Computer-Assisted , Electronics , Feedback , Lasers
6.
Opt Express ; 21(19): 22988-3000, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104182

ABSTRACT

We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance of key components, show recent demonstrations of integrated platforms, and give examples of applications.

7.
Opt Lett ; 37(17): 3657-9, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22940981

ABSTRACT

We report the generation of a 95 GHz carrier frequency by optical heterodyning of two wavelengths from adjacent channels from an arrayed waveguide grating-based multiwavelength laser. The extended cavity structure of the device provides low phase noise and narrow optical linewidth, further enhanced by the intracavity filter effect of the arrayed waveguide grating. We demonstrate that the generated RF beat note, at 95 GHz, has a -3 dB linewidth of 250 kHz. To the best of our knowledge, this is the narrowest RF linewidth generated from a free-running dual-wavelength semiconductor laser. The device is realized as a photonic integrated circuit using active-passive integration technology, and fabricated on a multiproject wafer run, constituting a novel approach for a compact, low-cost dual-wavelength heterodyne source.

SELECTION OF CITATIONS
SEARCH DETAIL
...