Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 139: 106555, 2019 10.
Article in English | MEDLINE | ID: mdl-31279966

ABSTRACT

Rafflesia (Rafflesiaceae) is a small endo-holoparasitic Asian plant genus known for its exceptionally large flowers, rare species, and high island endemism. In this study, phylogenetic (parsimony and Bayesian inference) and biogeographic (BioGeoBEARS) analyses of DNA sequence data (atp6 and matR genes, and nad1 B-C intron from the mitochondrial genome, and the nuclear ribosomal internal transcribed spacer) were used to reconstruct the phylogenetic relationships among 12 of the 13 known Philippine Rafflesia species and to determine the timing and pathways of their diversification. The results of these analyses confirm those of previous Rafflesia studies (which were largely focused on non-Philippine species) in finding pronounced biogeographic patterns. They suggest that dispersal between islands has been relatively uncommon, and indicate that the high island endemism of Rafflesia is a result of poor inter-island dispersal abilities. The results further suggest that its ancestral range might have been in Borneo, and that its lineages and species evolved earlier and more gradually than previously assumed.


Subject(s)
Islands , Malpighiales/classification , Phylogeny , Phylogeography , Bayes Theorem , Borneo , Cell Nucleus/genetics , Philippines , Stochastic Processes , Time Factors
2.
Ann Bot ; 119(4): 563-579, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28065919

ABSTRACT

Background and Aims: Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods: Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results: Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Conclusions: Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa.


Subject(s)
Biological Evolution , Croton/anatomy & histology , Trees/anatomy & histology , Wood/anatomy & histology , Biodiversity , Ecosystem , Phylogeny
3.
PhytoKeys ; (90): 1-87, 2017.
Article in English | MEDLINE | ID: mdl-29391851

ABSTRACT

All published names of Croton from Madagascar, the Comoros, and the Mascarenes are treated here. We indicate which names are currently accepted (123 native species and 1 introduced), which ones we consider to be heterotypic synonyms (188), which ones are doubtful (25), and which ones should be excluded (5). We newly designate lectotypes for 108 names, and epitypes for C. anisatus Baill., C. nobilis Baill., and C. submetallicus Baill. A total of 133 names are newly treated as synonyms. One new combination is made, Croton basaltorum (Leandri) P.E.Berry for C. antanosiensis var. basaltorum Leandri, and one new name is proposed, Croton toliarensis B.W.vanEe & Kainul. for C. tranomarensis var. rosmarinifolius Radcl.-Sm.

4.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24513576

ABSTRACT

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Subject(s)
Adaptation, Biological , Bromeliaceae/genetics , Phylogeny , Biodiversity , Latin America , Southwestern United States
5.
Mol Phylogenet Evol ; 63(2): 305-26, 2012 May.
Article in English | MEDLINE | ID: mdl-22273597

ABSTRACT

Euphorbia is among the largest genera of angiosperms, with about 2000 species that are renowned for their remarkably diverse growth forms. To clarify phylogenetic relationships in the genus, we used maximum likelihood, bayesian, and parsimony analyses of DNA sequence data from 10 markers representing all three plant genomes, averaging more than 16kbp for each accession. Taxon sampling included 176 representatives from Euphorbioideae (including 161 of Euphorbia). Analyses of these data robustly resolve a backbone topology of four major, subgeneric clades--Esula, Rhizanthium, Euphorbia, and Chamaesyce--that are successively sister lineages. Ancestral state reconstructions of six reproductive and growth form characters indicate that the earliest Euphorbia species were likely woody, non-succulent plants with helically arranged leaves and 5-glanded cyathia in terminal inflorescences. The highly modified growth forms and reproductive features in Euphorbia have independent origins within the subgeneric clades. Examples of extreme parallelism in trait evolution include at least 14 origins of xeromorphic growth forms and at least 13 origins of seed caruncles. The evolution of growth form and inflorescence position are significantly correlated, and a pathway of evolutionary transitions is supported that has implications for the evolution of Euphorbia xerophytes of large stature. Such xerophytes total more than 400 species and are dominants of vegetation types throughout much of arid Africa and Madagascar.


Subject(s)
Euphorbia , Phylogeny , Plant Leaves/anatomy & histology , Seeds/anatomy & histology , Seeds/genetics , Base Sequence , Biological Evolution , Euphorbia/anatomy & histology , Euphorbia/classification , Euphorbia/genetics , Evolution, Molecular , Genetic Markers , Genome, Plant , Molecular Sequence Data , Sequence Analysis, DNA
6.
Am J Bot ; 98(5): 872-95, 2011 May.
Article in English | MEDLINE | ID: mdl-21613186

ABSTRACT

PREMISE: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. METHODS: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. RESULTS: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. CONCLUSIONS: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.


Subject(s)
Bromeliaceae/genetics , Evolution, Molecular , Phylogeny , Plastids/genetics , Bayes Theorem , Biological Evolution , Bromeliaceae/classification , DNA, Plant/genetics , Genes, Plant , Likelihood Functions , Molecular Sequence Data , NADH Dehydrogenase/genetics , Plant Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA
7.
Mol Phylogenet Evol ; 60(2): 193-206, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21554970

ABSTRACT

Phylogenetic relationships of Croton section Cleodora (Klotzsch) Baill. were evaluated using the nuclear ribosomal ITS and the chloroplast trnL-F and trnH-psbA regions. Our results show a strongly supported clade containing most previously recognized section Cleodora species, plus some other species morphologically similar to them. Two morphological synapomorphies that support section Cleodora as a clade include pistillate flowers in which the sepals overlap to some degree, and styles that are connate at the base to varying degrees. The evolution of vegetative and floral characters that have previously been relied on for taxonomic decisions within this group are evaluated in light of the phylogenetic hypotheses. Within section Cleodora there are two well-supported clades, which are proposed here as subsections (subsection Sphaerogyni and subsection Spruceani). The resulting phylogenetic hypothesis identifies the closest relatives of the medicinally important and essential oil-rich Croton cajucara Benth. as candidates for future screening in phytochemical and pharmacological studies.


Subject(s)
Biological Evolution , Croton/genetics , Phylogeny , Base Sequence , Brazil , Croton/anatomy & histology , Croton/classification , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Flowers/anatomy & histology , Genes, Plant/genetics , Molecular Sequence Data , Phenotype , Plants, Medicinal/anatomy & histology , Plants, Medicinal/genetics , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
8.
Mol Ecol ; 15(10): 2735-51, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16911197

ABSTRACT

Croton alabamensis (Euphorbiaceae s.s.) is a rare plant species known from several populations in Texas and Alabama that have been assigned to var. texensis and var. alabamensis, respectively. We performed maximum parsimony, maximum likelihood, and Bayesian analyses of DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and 5.8S regions and chloroplast trnL-trnF regions from collections of the two varieties of C. alabamensis and from outgroup taxa. C. alabamensis emerges alone on a long branch that is sister to Croton section Corylocroton and the Cuban endemic genus Moacroton. Molecular clock analysis estimates the split of C. alabamensis from its closest relatives in sect. Corylocroton at 41 million years ago, whereas the split of the two varieties of C. alabamensis occurred sometime in the Quaternary. Amplified fragment length polymorphism (AFLP) analyses were performed using two selective primer pairs on a larger sampling of accessions (22 from Texas, 17 from Alabama) to further discriminate phylogenetic structure and quantify genetic diversity. Using both neighbour joining and minimum evolution, the populations from the Cahaba and Black Warrior watersheds in Alabama form two well-separated groups, and in Texas, geographically distinct populations are recovered from Fort Hood, Balcones Canyonlands, and Pace Bend Park. Most of the molecular variance is accounted for by variance within populations. Approximately equal variance is found among populations within states and between states (varieties). Genetic distance between the Texas populations is significantly less than genetic distance between the Alabama populations. Both sequence and AFLP data support the same relationships between the varieties of C. alabamensis and their outgroup, while the AFLP data provide better resolution among the different geographical regions where C. alabamensis occurs. The conservation implications of these findings are discussed.


Subject(s)
Euphorbiaceae/genetics , Euphorbiaceae/physiology , Geography , Phylogeny , Polymorphism, Genetic/genetics , Alabama , Base Sequence , Demography , Sequence Analysis, DNA , Texas
9.
Am J Bot ; 92(9): 1520-34, 2005 Sep.
Article in English | MEDLINE | ID: mdl-21646170

ABSTRACT

Parsimony, likelihood, and Bayesian analyses of nuclear ITS and plastid trnL-F DNA sequence data are presented for the giant genus Croton (Euphorbiaceae s.s.) and related taxa. Sampling comprises 88 taxa, including 78 of the estimated 1223 species and 29 of the 40 sections previously recognized of Croton. It also includes the satellite genus Moacroton and genera formerly placed in tribe Crotoneae. Croton and all sampled segregate genera form a monophyletic group sister to Brasiliocroton, with the exception of Croton sect. Astraea, which is reinstated to the genus Astraea. A small clade including Moacroton, Croton alabamensis, and C. olivaceus is sister to all other Croton species sampled. The remaining Croton species fall into three major clades. One of these is entirely New World, corresponding to sections Cyclostigma, Cascarilla, and Velamea sensu Webster. The second is entirely Old World and is sister to a third, also entirely New World clade, which is composed of at least 13 of Webster's sections of Croton. This study establishes a phylogenetic framework for future studies in the hyper-diverse genus Croton, indicates a New World origin for the genus, and will soon be used to evaluate wood anatomical, cytological, and morphological data in the Crotoneae tribe.

SELECTION OF CITATIONS
SEARCH DETAIL
...