Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint J ; 105-B(9): 946-952, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37652450

ABSTRACT

Aims: The Birmingham Hip Resurfacing (BHR) arthroplasty has been used as a surgical treatment of coxarthrosis since 1997. We present 20-year results of 234 consecutive BHRs performed in our unit. Methods: Between 1999 and 2001, there were 217 patients: 142 males (65.4%), mean age 52 years (18 to 68) who had 234 implants (17 bilateral). They had patient-reported outcome measures collected, imaging (radiograph and ultrasound), and serum metal ion assessment. Survivorship analysis was performed using Kaplan-Meier estimates. Revision for any cause was considered as an endpoint for the analysis. Results: Mean follow-up was 20.9 years (19.3 to 22.4). Registry data revealed that 19 hips (8.1%) had been revised and 26 patients (12%) had died from causes unrelated to the BHR. Among the remaining 189 hips, 61% were available for clinical follow-up at 20 years (n = 115) and 70% of patients had biochemical follow-up (n = 132). The cumulative implant survival rate at 20 years for male patients was 96.5% (95% confidence interval (CI) 93.5 to 99.6), and for female patients 87% (95% CI 79.7 to 94.9). The difference was statistically significant (p = 0.029). The mean Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, and Forgotten Joint Score were 45 (29 to 48), 89 (43 to 100), and 84 (19 to 100), respectively. The mean scores for each of the five domains of the EuroQol five-dimension three-level questionnaire were 1.2, 1.0, 1.2, 1.3, and 1.1, and mean overall score 82.6 (50 to 100). Ultrasound showed no pseudotumour. Mean cobalt and chromium levels were 32.1 nmol/l (1 to 374) and 45.5 nmol/l (9 to 408), respectively. Conclusion: This study shows that BHRs provide excellent survivorship and functional outcomes in young male patients. At 20 years, soft-tissue imaging and serum metal ion studies suggest that a metal-on-metal resurfacing implant can be well tolerated in a group of young patients.


Subject(s)
Arthroplasty, Replacement, Hip , Osteoarthritis, Hip , Humans , Female , Male , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Osteoarthritis, Hip/surgery , Chromium , Cobalt , Kaplan-Meier Estimate
2.
Arch Orthop Trauma Surg ; 143(3): 1611-1617, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35149888

ABSTRACT

INTRODUCTION: Classifying complex acetabular defects in revision total hip arthroplasty (THA) by means of conventional radiographs comes with significant limitations. Statistical shape modelling allows the virtual reconstruction of the native pelvic morphology, hereby enabling an analytic acetabular defect assessment. Our objective was to evaluate the effect of advanced imaging augmented with analytic representations of the defect on (1) intra- and inter-rater reliability, and (2) up- or downscaling of classification scores when evaluating acetabular defects in patients undergoing revision THA. MATERIALS AND METHODS: The acetabular defects of 50 patients undergoing revision THA were evaluated by three independent, fellowship-trained orthopaedic surgeons. Defects were classified according to the acetabular defect classification (ADC) using four different imaging-based representations, namely, standard radiographs, CT imaging, a virtual three-dimensional (3D) model and a quantitative analytic representation of the defect based on a statistical shape model reconstruction. Intra- and inter-rater reliabilities were quantified using Fleiss' and Cohen's kappa scores, respectively. Up- and downscaling of classification scores were compared for each of the imaging-based representations and differences were tested. RESULTS: Overall inter-rater agreement across all imaging-based representations for the classification was fair (κ 0.29 95% CI 0.28-0.30). Inter-rater agreement was lowest for radiographs (κ 0.21 95% CI 0.19-0.22) and increased for other representations with agreement being highest when using analytic defect models (κ 0.46 95% CI 0.43-0.48). Overall intra-rater agreement was moderate (κ 0.51 95% CI 0.42-0.60). Intra-rater agreement was lowest for radiographs (κ 0.40 95% CI 0.23-0.57), and highest for ratings including analytic defect models (κ 0.64:95% CI 0.46-0.82). Virtual 3D models with quantitative analytic defect representations upscaled acetabular defect scores in comparison to standard radiographs. CONCLUSIONS: Using 3D CT imaging with statistical shape models doubles the intra- and inter-rater reliability and results in upscaling of acetabular defect classification when compared to standard radiographs. This method of evaluating defects will aid in planning surgical reconstruction and stimulate the development of new classification systems based on advanced imaging techniques.


Subject(s)
Arthroplasty, Replacement, Hip , Imaging, Three-Dimensional , Humans , Reproducibility of Results , Acetabulum , Observer Variation
3.
Clin Orthop Relat Res ; 479(2): 288-294, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32956147

ABSTRACT

BACKGROUND: The external obturator footprint in the trochanteric fossa has been suggested as a potential landmark for stem depth in direct anterior THA. Its upper border can be visualized during surgical exposure of the femur. A recent study reported that the height of the tendon has little variability (6.4 ± 1.4 mm) as measured on CT scans and that the trochanteric fossa is consistently visible on conventional pelvic radiographs. However, it is unclear where exactly the footprint of this tendon should be templated during preoperative planning so that it can be useful intraoperatively. QUESTIONS/PURPOSES: In this study, we sought: (1) to provide instructions on exactly where to template the external obturator footprint on a preoperative planning radiograph, and (2) to confirm the small variability in height of the external obturator footprint found on CT scans in a cadaver study. METHODS: Two-dimensional (2-D) and three-dimensional (3-D) imaging was used to map the anatomy of the external obturator footprint. This dual approach was chosen because of their complementarity; conventional 2-D radiographs translate to clinical practice but 3-D navigation-based digitalization combined with CT allows for a better understanding of the cortical lines that comprise the outline of the trochanteric fossa. In 12 (four males, mean age 80 years, range 69 to 88) formalin-treated cadaveric lower extremities including the pelvis, the external obturator tendon was dissected, and the top and bottom end of its footprint marked with two small needles, and calibrated radiographs were taken. For another five (three males, mean age 75.7 years, range 61 to 91) fresh-frozen cadaveric lower extremities, including femoral reflective marker frames, CT scans were obtained and the exact location of the external obturator footprint was recorded using 3-D navigation-based digitalization. Qualitative analysis of both imaging modalities was used to develop instructions on where the external obturator footprint should be templated on a preoperative planning radiograph. Quantitative analysis of the dimensions of the external obturator footprint was performed. RESULTS: The lowest point of the external obturator footprint was consistently found (± 1 mm) at the intersection of the vertical line comprised of the lateral wall of the trochanteric fossa and the oblique line formed by the intertrochanteric crest and therefore allows templating of this structure on the preoperative planning radiograph. The median (range) height of the footprint measured 6.4 mm and demonstrated small variability (4.7 to 7.6). CONCLUSIONS: We suggest templating a 6.4-mm circle with its bottom on the intersection described above. CLINICAL RELEVANCE: The distance between the templated shoulder of the stem and the top of the circle can be used intraoperatively for guidance. Discrepancy should lead to re-evaluation of stem depth and leg length. Future work will investigate the usability, validity, and reliability of the proposed methodology in daily clinical practice.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Joint/anatomy & histology , Tendons/anatomy & histology , Aged , Aged, 80 and over , Anatomic Landmarks , Cadaver , Hip Joint/diagnostic imaging , Hip Joint/surgery , Humans , Imaging, Three-Dimensional , Male , Tendons/diagnostic imaging , Tendons/surgery , Tomography, X-Ray Computed
4.
J Clin Orthop Trauma ; 11(Suppl 2): S211-S213, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32189942

ABSTRACT

Complex acetabular reconstruction sometimes requires the use of a custom-made triflange acetabular component (CTAC). In this article we describe the surgical technique to achieve its implantation through the direct anterior approach (DAA). Meanwhile we report on our first aMace® CTAC placement in revision total hip arthroplasty through the DAA. Most procedures concerning the implantation of a CTAC are performed through the posterolateral approach to obtain adequate exposure. However, literature reports a high overall dislocation rate of 14% using this approach for revision hip arthroplasty. Because of the documented lower dislocation rate and a faster early rehabilitation of procedures performed through DAA, we considered to implant this vast acetabular reconstruction component through the same approach we use for our primary and standard revision cases. In collaboration with the engineers, the design and the screw direction were adapted to the DAA. We used a standard DAA with longitudinal incision and had no difficulty to successfully implant the CTAC in the desired implant position.

SELECTION OF CITATIONS
SEARCH DETAIL
...