Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 608(7923): 609-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35948633

ABSTRACT

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Subject(s)
Exons , Gene Deletion , Molecular Targeted Therapy , Neoplasms , Oncogenes , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Animals , Exons/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
3.
Nat Commun ; 11(1): 1501, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198375

ABSTRACT

Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues.


Subject(s)
Carcinogenesis/genetics , Chromosomal Instability , Oncogenes/genetics , Adenoma/genetics , Aneuploidy , Animals , Cell Proliferation , Chromosome Segregation , Colon/pathology , Disease Models, Animal , Female , Gastrointestinal Neoplasms/genetics , Intestinal Neoplasms/genetics , Intestines/pathology , Karyotype , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organoids
4.
Gastroenterology ; 147(5): 1064-72.e5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25088490

ABSTRACT

BACKGROUND & AIMS: Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with defects in MMR exist among MMR-proficient cells, as observed in healthy intestinal tissues from patients with Lynch syndrome. We aimed to create a mouse model of this situation to aid in identification of environmental factors that affect MMR-defective cells and their propensity for oncogenic transformation. METHODS: We created mice in which the MMR gene Msh2 can be inactivated in a defined fraction of crypt base columnar stem cells to generate MSH2-deficient intestinal crypts among an excess of wild-type crypts (Lgr5-CreERT2;Msh2(flox/-) mice). Intestinal tissues were collected; immunohistochemical analyses were performed for MSH2, along with allele-specific PCR assays. We traced the fate of MSH2-deficient crypts under the influence of different external factors. RESULTS: Lgr5-CreERT2;Msh2(flox/-) mice developed more adenomas and adenocarcinomas than control mice; all tumors were MSH2 deficient. Exposure of Lgr5-CreERT2;Msh2(flox/-) mice to the methylating agent temozolomide caused MSH2-deficient intestinal stem cells to proliferate more rapidly than wild-type stem cells. The MSH2-deficient intestinal stem cells were able to colonize the intestinal epithelium and many underwent oncogenic transformation, forming intestinal neoplasias. CONCLUSIONS: We developed a mouse model of Lynch syndrome (Lgr5-CreERT2;Msh2(flox/-) mice) and found that environmental factors can modify the number and mutability of the MMR-deficient stem cells. These findings provide evidence that environmental factors can promote development of neoplasias and tumors in patients with Lynch syndrome.


Subject(s)
Adenocarcinoma/chemically induced , Adenocarcinoma/genetics , Adenoma/chemically induced , Adenoma/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/chemically induced , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/drug effects , Dacarbazine/analogs & derivatives , Intestines/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/metabolism , Adenoma/pathology , Animals , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Dacarbazine/toxicity , Disease Models, Animal , Female , Intestinal Mucosa/metabolism , Intestines/pathology , Male , Mice, Knockout , MutS Homolog 2 Protein/deficiency , MutS Homolog 2 Protein/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Risk Factors , Temozolomide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...