Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1084: 45-60, 2019.
Article in English | MEDLINE | ID: mdl-29299874

ABSTRACT

In vitro production of tissues or tissue engineering is a promising approach to produce artificial tissues for regenerative medicine. There are at least three important components of tissue engineering, including stem cells, scaffolds and growth factors. This study aimed to produce cartilage tissues in vitro from culture and chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMMSCs), induced by chondrogenesis medium, on biodegradable polycaprolactone (PCL) scaffolds. BMMSCs were isolated from rabbit bone marrow according to the standard protocol. The adherence, proliferation and differentiation of BMMSCs on scaffolds were investigated using two scaffold systems: PCL scaffolds and collagen-coated PCL (PCL/col) scaffolds. The results showed that BMMSCs could attach and grow on both PCL and PCL/col scaffolds. However, the adhesion efficacy of BMMSCs on the PCL/col scaffolds was significantly better than on PCL scaffolds. Under induced conditions, BMMSCs on PLC/col scaffolds showed increased aggrecan accumulation and upregulated expression of chondrogenesis-associated genes (e.g. collagen type II, collagen type I, aggrecan and collagen type X) after 3, 7, 21 and 28 days of induction. These in vitro cartilage tissues could form mature chondrocyte-like cells after they were grafted into rabbits. The results suggest that use of BMMSCs in combination with polycaprolactone scaffolds and chondrogenesis medium can be a way to form in vitro cartilage tissue.


Subject(s)
Bone Marrow , Chondrogenesis , Mesenchymal Stem Cells , Polyesters , Tissue Scaffolds , Animals , Cartilage/cytology , Cells, Cultured , Mesenchymal Stem Cells/cytology , Polyesters/chemistry , Rabbits , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...