Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Immunol ; 12: 639818, 2021.
Article in English | MEDLINE | ID: mdl-33833759

ABSTRACT

Anti-CD19 chimeric antigen receptor (CD19-CAR)-engineered T cells are approved therapeutics for malignancies. The impact of the hinge domain (HD) and the transmembrane domain (TMD) between the extracellular antigen-targeting CARs and the intracellular signaling modalities of CARs has not been systemically studied. In this study, a series of 19-CARs differing only by their HD (CD8, CD28, or IgG4) and TMD (CD8 or CD28) was generated. CARs containing a CD28-TMD, but not a CD8-TMD, formed heterodimers with the endogenous CD28 in human T cells, as shown by co-immunoprecipitation and CAR-dependent proliferation of anti-CD28 stimulation. This dimerization was dependent on polar amino acids in the CD28-TMD and was more efficient with CARs containing CD28 or CD8 HD than IgG4-HD. The CD28-CAR heterodimers did not respond to CD80 and CD86 stimulation but had a significantly reduced CD28 cell-surface expression. These data unveiled a fundamental difference between CD28-TMD and CD8-TMD and indicated that CD28-TMD can modulate CAR T-cell activities by engaging endogenous partners.


Subject(s)
CD28 Antigens/immunology , Protein Domains/immunology , Receptors, Chimeric Antigen/immunology , Antigens, CD19/immunology , Dimerization , Humans , Lymphocyte Activation/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology
2.
Nature ; 582(7812): 416-420, 2020 06.
Article in English | MEDLINE | ID: mdl-32499641

ABSTRACT

Regulatory T (Treg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties2, can promote autoimmunity and/or facilitate more effective tumour immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Treg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression; whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Treg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Treg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.


Subject(s)
CRISPR-Cas Systems , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Autoimmunity/immunology , Cells, Cultured , Forkhead Transcription Factors/biosynthesis , Gene Editing , Gene Expression Regulation , Humans , Immunotherapy , Male , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/prevention & control , Protein Stability , Reproducibility of Results , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/metabolism
3.
PLoS One ; 14(10): e0217728, 2019.
Article in English | MEDLINE | ID: mdl-31647813

ABSTRACT

Regulatory T cells (Tregs) are an immunosuppressive population that are identified based on the stable expression of the fate-determining transcription factor forkhead box P3 (Foxp3). Tregs can be divided into distinct subsets based on whether they developed in the thymus (tTregs) or in the periphery (pTregs). Whether there are unique functional roles that distinguish pTregs and tTregs remains largely unclear. To elucidate these functions, efforts have been made to specifically identify and modify individual Treg subsets. Deletion of the conserved non-coding sequence (CNS)1 in the Foxp3 locus leads to selective impairment of pTreg generation without disrupting tTreg generation in the C57BL/6J background. Using CRISPR-Cas9 genome editing technology, we removed the Foxp3 CNS1 region in the non-obese diabetic (NOD) mouse model of spontaneous type 1 diabetes mellitus (T1D) to determine if pTregs contribute to autoimmune regulation. Deletion of CNS1 impaired in vitro induction of Foxp3 in naïve NOD CD4+ T cells, but it did not alter Tregs in most lymphoid and non-lymphoid tissues analyzed except for the large intestine lamina propria, where a small but significant decrease in RORγt+ Tregs and corresponding increase in Helios+ Tregs was observed in NOD CNS1-/- mice. CNS1 deletion also did not alter the development of T1D or glucose tolerance despite increased pancreatic insulitis in pre-diabetic female NOD CNS1-/- mice. Furthermore, the proportions of autoreactive Tregs and conventional T cells (Tconvs) within pancreatic islets were unchanged. These results suggest that pTregs dependent on the Foxp3 CNS1 region are not the dominant regulatory population controlling T1D in the NOD mouse model.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Disease Models, Animal , Forkhead Transcription Factors/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
5.
Cell Metab ; 29(5): 1045-1060.e10, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30799288

ABSTRACT

Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by hyperglycemia due to progressive loss of pancreatic beta cells. Immune-mediated beta cell destruction drives the disease, but whether beta cells actively participate in the pathogenesis remains unclear. Here, we show that during the natural history of T1D in humans and the non-obese diabetic (NOD) mouse model, a subset of beta cells acquires a senescence-associated secretory phenotype (SASP). Senescent beta cells upregulated pro-survival mediator Bcl-2, and treatment of NOD mice with Bcl-2 inhibitors selectively eliminated these cells without altering the abundance of the immune cell types involved in the disease. Significantly, elimination of senescent beta cells halted immune-mediated beta cell destruction and was sufficient to prevent diabetes. Our findings demonstrate that beta cell senescence is a significant component of the pathogenesis of T1D and indicate that clearance of senescent beta cells could be a new therapeutic approach for T1D.


Subject(s)
Cellular Senescence/drug effects , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/prevention & control , Hyperglycemia/metabolism , Hyperglycemia/prevention & control , Insulin-Secreting Cells/metabolism , Adolescent , Adult , Aged , Animals , Biphenyl Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Child , Child, Preschool , Cohort Studies , Female , Fibroblasts , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Nitrophenols/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , THP-1 Cells , Young Adult
6.
Immunity ; 50(2): 362-377.e6, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30709738

ABSTRACT

Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.


Subject(s)
Forkhead Transcription Factors/immunology , Mutation , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Child , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/metabolism , Th2 Cells/metabolism
7.
Front Immunol ; 10: 3007, 2019.
Article in English | MEDLINE | ID: mdl-31998303

ABSTRACT

RORγt-expressing Tregs form a specialized subset of intestinal CD4+ Foxp3+ cells which is essential to maintain gut homeostasis and tolerance to commensal microbiota. Recently, c-Maf emerged as a critical factor in the regulation of RORγt expression in Tregs. However, aside from c-Maf signaling, the signaling pathways involved in the differentiation of RORγt+ Tregs and their possible interplay with c-Maf in this process are largely unknown. We show that RORγt+ Treg development is controled by positive as well as negative signals. Along with c-Maf signaling, signals derived from a complex microbiota, as well as IL-6/STAT3- and TGF-ß-derived signals act in favor of RORγt+ Treg development. Ectopic expression of c-Maf did not rescue RORγt expression in STAT3-deficient Tregs, indicating the presence of additional effectors downstream of STAT3. Moreover, we show that an inflammatory IFN-γ/STAT1 signaling pathway acts as a negative regulator of RORγt+ Treg differentiation in a c-Maf independent fashion. These data thus argue for a complex integrative signaling network that finely tunes RORγt expression in Tregs. The finding that type 1 inflammation impedes RORγt+ Treg development even in the presence of an active IL-6/STAT3 pathway further suggests a dominant negative effect of STAT1 over STAT3 in this process.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Immunophenotyping , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-maf/genetics , Proto-Oncogene Proteins c-maf/metabolism , STAT3 Transcription Factor/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta/metabolism
8.
Nature ; 559(7715): E13, 2018 07.
Article in English | MEDLINE | ID: mdl-29899441

ABSTRACT

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence "This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9)." should read: "This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).". This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.

9.
Cell Rep ; 23(11): 3262-3274, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29898397

ABSTRACT

Regulatory T cells (Tregs) are critical for maintaining immune homeostasis, but their presence in tumor tissues impairs anti-tumor immunity and portends poor prognoses in cancer patients. Here, we reveal a mechanism to selectively target and reprogram the function of tumor-infiltrating Tregs (TI-Tregs) by exploiting their dependency on the histone H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) in tumors. Disruption of EZH2 activity in Tregs, either pharmacologically or genetically, drove the acquisition of pro-inflammatory functions in TI-Tregs, remodeling the tumor microenvironment and enhancing the recruitment and function of CD8+ and CD4+ effector T cells that eliminate tumors. Moreover, abolishing EZH2 function in Tregs was mechanistically distinct from, more potent than, and less toxic than a generalized Treg depletion approach. This study reveals a strategy to target Tregs in cancer that mitigates autoimmunity by reprogramming their function in tumors to enhance anti-cancer immunity.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/deficiency , Enhancer of Zeste Homolog 2 Protein/genetics , Forkhead Transcription Factors/metabolism , Humans , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Tumor Necrosis Factor-alpha/metabolism
10.
Nature ; 549(7670): 111-115, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28854172

ABSTRACT

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.


Subject(s)
Autoimmunity/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Enhancer Elements, Genetic/genetics , Animals , Antigens, CD/biosynthesis , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Differentiation , Cell Line , Chromatin/genetics , Female , Gene Expression Regulation/genetics , Humans , Interleukin-2 Receptor alpha Subunit/biosynthesis , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Lectins, C-Type/biosynthesis , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Th17 Cells/cytology , Th17 Cells/immunology
11.
Immunity ; 43(1): 161-74, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26092469

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) and regulatory T (Treg) cells are systemically induced by helminth infection but also sustain metabolic homeostasis in adipose tissue and contribute to tissue repair during injury. Here we show that interleukin-33 (IL-33) mediates activation of ILC2s and Treg cells in resting adipose tissue, but also after helminth infection or treatment with IL-2. Unexpectedly, ILC2-intrinsic IL-33 activation was required for Treg cell accumulation in vivo and was independent of ILC2 type 2 cytokines but partially dependent on direct co-stimulatory interactions via ICOSL-ICOS. IFN-γ inhibited ILC2 activation and Treg cell accumulation by IL-33 in infected tissue, as well as adipose tissue, where repression increased with aging and high-fat diet-induced obesity. IL-33 and ILC2s are central mediators of type 2 immune responses that promote tissue and metabolic homeostasis, and IFN-γ suppresses this pathway, likely to promote inflammatory responses and divert metabolic resources necessary to protect the host.


Subject(s)
Interferon-gamma/immunology , Interleukins/immunology , Lymphocyte Activation/immunology , Strongylida Infections/immunology , T-Lymphocytes, Regulatory/immunology , Aging/immunology , Animals , Diet, High-Fat , Enzyme Activation/immunology , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Inducible T-Cell Co-Stimulator Protein/immunology , Interferon-gamma/pharmacology , Interleukin-2/pharmacology , Interleukin-33 , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/immunology , Lectins, C-Type , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Lung/cytology , Lung/immunology , Lung/pathology , Mice , Mice, Transgenic , Nippostrongylus/immunology , Obesity/immunology , Receptors, Immunologic/biosynthesis , Strongylida Infections/parasitology
12.
Blood ; 124(24): 3572-6, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25323825

ABSTRACT

Interleukin (IL)-2 promotes regulatory T-cell development and function, and treatment with IL-2 is being tested as therapy for some autoimmune diseases. However, patients receiving IL-2 treatment also experience eosinophilia due to an unknown mechanism. Here, we show that patients receiving low-dose IL-2 have elevated levels of serum IL-5, and this correlates with their degree of eosinophilia. In mice, low-dose IL-2-anti-IL-2 antibody complexes drove group 2 innate lymphoid cells (ILC2) to produce IL-5 and proliferate. Using genetic approaches in mice, we demonstrate that activation of ILC2 was responsible for the eosinophilia observed with IL-2 therapy. These observations reveal a novel cellular network that is activated during IL-2 treatment. A better understanding of the cross talk between these cell populations may lead to more effective targeting of IL-2 to treat autoimmune disease.


Subject(s)
Eosinophilia/drug therapy , Eosinophilia/immunology , Immunity, Innate/drug effects , Interleukin-2/pharmacology , Interleukin-5/immunology , Lymphocytes/immunology , Animals , Antibodies/immunology , Antibodies/pharmacology , Cell Proliferation/drug effects , Eosinophilia/pathology , Humans , Interleukin-2/antagonists & inhibitors , Interleukin-2/immunology , Lymphocytes/pathology , Mice
13.
PLoS Pathog ; 7(11): e1002358, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22072972

ABSTRACT

Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.


Subject(s)
Chemotactic Factors/metabolism , Dendritic Cells/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Murine pneumonia virus/immunology , Pneumonia, Viral/immunology , Pneumovirus Infections/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Animals , Chemokines , Chemotactic Factors/biosynthesis , Dendritic Cells/metabolism , Inflammation Mediators , Intercellular Signaling Peptides and Proteins/biosynthesis , Interferon Type I/biosynthesis , Interferon Type I/deficiency , Lung/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Murine pneumonia virus/metabolism , Murine pneumonia virus/pathogenicity , Pneumonia, Viral/metabolism , Pneumovirus Infections/metabolism , Receptors, Chemokine , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Viral Load
14.
Biochem Pharmacol ; 81(5): 569-76, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21184744

ABSTRACT

Lysine acetylation/deacetylation has been recognized as an important posttranslational modification regulating numerous cellular processes. Sirtuins represent novel players in these complex regulatory circuits. These NAD-dependent lysine-deacetylases have attracted much interest based on their role in the regulation of lifespan in lower organisms, and their capacity to interfere with cell growth, proliferation and survival in response to stress. Their absolute requirement for NAD suggests that these enzymes may represent an important molecular link between metabolism and several human disorders such as diabetes and cancer. More recently, the identification of several transcription factors known to play a role in the immune system as sirtuin substrates has suggested that this family of enzymes may also play an important role in the regulation of inflammation, a pathological situation with clear links to metabolism and aging in humans. We review herein the possible links between nuclear sirtuins and the regulation of an immune response, and discuss the possible strategies that may lead to the development of novel therapeutic approaches to treat inflammation by targeting sirtuin activity.


Subject(s)
Inflammation/metabolism , Sirtuins/physiology , Acetylation , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Nucleus/metabolism , Cytokines/metabolism , Granulocytes/immunology , Granulocytes/physiology , Humans , Inflammation/drug therapy , Inflammation/immunology , Molecular Targeted Therapy , NF-kappa B/genetics , NF-kappa B/metabolism , Transcription Factor AP-1/antagonists & inhibitors , Transcription, Genetic
15.
Cancer Res ; 70(1): 8-11, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20028851

ABSTRACT

Beyond its well-described role in cellular metabolism, intracellular nicotinamide adenine dinucleotide (NAD) levels have been shown to affect the enzymatic activity of a series of NAD-dependent enzymes, influencing biological responses such as cell survival and inflammation. Nicotinamide phosphoribosyl transferase activity has been shown to be essential for maintaining adequate intracellular NAD levels, suggesting that this enzyme may in fact play a central role in modulating the activity of a wide range of NAD-dependent enzymes. Several recent observations concur with this hypothesis and suggest that by regulating NAD availability, Nampt is able to control both cell viability and the inflammatory response. Nampt may thus represent a novel pharmacological target with valuable anti-inflammatory and antitumor properties.


Subject(s)
Inflammation/metabolism , Neoplasms/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Animals , Humans , NAD/metabolism
17.
Nat Med ; 15(2): 206-10, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19151729

ABSTRACT

Tumor necrosis factor (TNF) synthesis is known to play a major part in numerous inflammatory disorders, and multiple transcriptional and post-transcriptional regulatory mechanisms have therefore evolved to dampen the production of this key proinflammatory cytokine. The high expression of nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in the nicotinamide-dependent NAD biosynthetic pathway, in cells of the immune system has led us to examine the potential relationship between NAD metabolism and inflammation. We show here that intracellular NAD concentration promotes TNF synthesis by activated immune cells. Using a positive screen, we have identified Sirt6, a member of the sirtuin family, as the NAD-dependent enzyme able to regulate TNF production by acting at a post-transcriptional step. These studies reveal a previously undescribed relationship between metabolism and the inflammatory response and identify Sirt6 and the nicotinamide-dependent NAD biosynthetic pathway as novel candidates for immunointervention in an inflammatory setting.


Subject(s)
NAD/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Enzyme-Linked Immunosorbent Assay , Mice , Nicotinamide Phosphoribosyltransferase/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
J Immunol ; 181(7): 4685-95, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18802071

ABSTRACT

Nicotinamide phosphoribosyl transferase (Nampt)/pre-B cell colony-enhancing factor (PBEF)/visfatin is a protein displaying multiple functional properties. Originally described as a cytokine-like protein able to regulate B cell development, apoptosis, and glucose metabolism, this protein also plays an important role in NAD biosynthesis. To gain insight into its physiological role, we have generated a mouse strain expressing a conditional Nampt allele. Lack of Nampt expression strongly affects development of both T and B lymphocytes. Analysis of hemizygous cells and in vitro cell lines expressing distinct levels of Nampt illustrates the critical role of this protein in regulating intracellular NAD levels. Consequently, a clear relationship was found between intracellular Nampt levels and cell death in response to the genotoxic agent MNNG (N-methyl-N'-nitro-N-nitrosoguanidine), confirming that this enzyme represents a key regulator of cell sensitivity to NAD-consuming stress secondary to poly(ADP-ribose) polymerases overactivation. By using mutant forms of this protein and a well-characterized pharmacological inhibitor (FK866), we unequivocally demonstrate that the ability of the Nampt to regulate cell viability during genotoxic stress requires its enzymatic activity. Collectively, these data demonstrate that Nampt participates in cellular resistance to genotoxic/oxidative stress, and it may confer to cells of the immune system the ability to survive during stressful situations such as inflammation.


Subject(s)
Cell Differentiation/immunology , Cytokines/physiology , Immunity, Cellular , Lymphocytes/enzymology , Lymphocytes/immunology , Nicotinamide Phosphoribosyltransferase/physiology , Animals , Cell Death/genetics , Cell Death/immunology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Survival/genetics , Cell Survival/immunology , Cytokines/biosynthesis , Cytokines/deficiency , Cytokines/genetics , Gene Deletion , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Lymphocytes/drug effects , Methylnitronitrosoguanidine/toxicity , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , NIH 3T3 Cells , Nicotinamide Phosphoribosyltransferase/biosynthesis , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , Oxidative Stress/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology
19.
PLoS One ; 3(5): e2267, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18493620

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFalpha levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders.


Subject(s)
Inflammation/enzymology , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Arthritis, Experimental/enzymology , Collagen/administration & dosage , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Nicotinamide Phosphoribosyltransferase/metabolism , Tumor Necrosis Factor-alpha/blood , Up-Regulation
20.
Biochem Pharmacol ; 73(6): 831-42, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17188249

ABSTRACT

Nicotinamide (NAm) represents both a pharmacological agent known to express cell preserving and anti-inflammatory properties, and a useful investigational tool to elucidate cellular pathways regulating a wide range of cellular functions. We demonstrate in this study that exogenous NAm, when used at pharmacological doses, inhibits activation of primary murine B lymphocytes in response to multiple ligands. NAm appears to affect a membrane proximal event leading to MAPKs activation, a transduction pathway shared by multiple receptors including the antigen-specific B cell receptor, CD38, CD40 and TLR4 receptors. NAm inhibited phospho-ERK accumulation, and only marginally affected phospho-p38 and phospho-JNK induction upon BCR stimulation of naive B lymphocytes. Accordingly, NAm also affected the expression of known targets of the MAPK ERK pathway such as CD69 and cyclin D2. Based on a comparison with well-characterized pharmacological inhibitors, we suggest in this work that NAm may inhibit a post-translational modification mediated by a yet unidentified mono(ADP-ribose)transferase. Collectively, our observations indicate that in addition to its previously described effect on cells of the innate immune system, NAm is able to modulate the activity of B lymphocytes suggesting a potential role of this vitamin in regulating antibody-mediated autoimmune disorders.


Subject(s)
B-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , MAP Kinase Signaling System/drug effects , Niacinamide/pharmacology , 3-Iodobenzylguanidine/pharmacology , Adenosine Diphosphate Ribose/metabolism , Animals , Antibody Formation/drug effects , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , B-Lymphocytes/immunology , Calcium/metabolism , Female , Lectins, C-Type , Mice , Mice, Inbred BALB C , Receptors, Antigen, B-Cell
SELECTION OF CITATIONS
SEARCH DETAIL
...