Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 512: 35-43, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710381

ABSTRACT

The larval stage of the Drosophila melanogaster life cycle is characterized by rapid growth and nutrient storage that occur over three instar stages separated by molts. In the third instar, the steroid hormone ecdysone drives key developmental processes and behaviors that occur in a temporally-controlled sequence and prepare the animal to undergo metamorphosis. Accurately staging Drosophila larvae within the final third instar is critical due to the rapid developmental progress at this stage, but it is challenging because the rate of development varies widely across a population of animals even if eggs are laid within a short period of time. Moreover, many methods to stage third instar larvae are cumbersome, and inherent variability in the rate of development confounds some of these approaches. Here we demonstrate the usefulness of the Sgs3-GFP transgene, a fusion of the Salivary gland secretion 3 (Sgs3) and GFP proteins, for staging third instar larvae. Sgs3-GFP is expressed in the salivary glands in an ecdysone-dependent manner from the midpoint of the third instar, and its expression pattern changes reproducibly as larvae progress through the third instar. We show that Sgs3-GFP can easily be incorporated into experiments, that it allows collection of developmentally-equivalent individuals from a mixed population of larvae, and that its use enables precise assessment of changing levels of hormones, metabolites, and gene expression during the second half of the third instar.


Subject(s)
Drosophila melanogaster , Ecdysone , Green Fluorescent Proteins , Larva , Phenotype , Salivary Glands , Animals , Larva/metabolism , Larva/genetics , Salivary Glands/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Ecdysone/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Genes, Reporter , Gene Expression Regulation, Developmental/genetics , Animals, Genetically Modified , Metamorphosis, Biological/genetics
2.
Sci Rep ; 13(1): 7073, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127649

ABSTRACT

Cranial neural crest cells (cNCC) are a multipotent embryonic cell population that give rise to a diverse set of cell types. These cells are particularly vulnerable to external metabolic stressors, as exemplified by the association between maternal hyperglycemia and congenital malformations. We were interested in studying the effect of various concentrations of glucose and pyruvate on cNCC metabolism, migration, and differentiation using an established murine neural crest cell model (O9-1). We unexpectedly observed a pattern of gene expression suggestive of cholesterol biosynthesis induction under glucose depletion conditions in O9-1 cells. We further showed that treatment with two different cholesterol synthesis inhibitors interfered with cell migration and differentiation, inhibiting chondrogenesis while enhancing smooth muscle cell differentiation. As congenital arhinia (absent external nose), a malformation caused by mutations in SMCHD1, appears to represent, in part, a defect in cNCC, we were also interested in investigating the effects of glucose and cholesterol availability on Smchd1 expression in O9-1 cells. Smchd1 expression was induced under high glucose conditions whereas cholesterol synthesis inhibitors decreased Smchd1 expression during chondrogenesis. These data highlight a novel role for cholesterol biosynthesis in cNCC physiology and demonstrate that human phenotypic variability in SMCHD1 mutation carriers may be related, in part, to SMCHD1's sensitivity to glucose or cholesterol dosage during development.


Subject(s)
Glucose , Neural Crest , Mice , Animals , Humans , Cell Differentiation , Glucose/metabolism , Chromosomal Proteins, Non-Histone/metabolism
3.
Nucleic Acids Res ; 48(20): 11284-11303, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33080019

ABSTRACT

The revolution in understanding higher order chromosome dynamics and organization derives from treating the chromosome as a chain polymer and adapting appropriate polymer-based physical principles. Using basic principles, such as entropic fluctuations and timescales of relaxation of Rouse polymer chains, one can recapitulate the dominant features of chromatin motion observed in vivo. An emerging challenge is to relate the mechanical properties of chromatin to more nuanced organizational principles such as ubiquitous DNA loops. Toward this goal, we introduce a real-time numerical simulation model of a long chain polymer in the presence of histones and condensin, encoding physical principles of chromosome dynamics with coupled histone and condensin sources of transient loop generation. An exact experimental correlate of the model was obtained through analysis of a model-matching fluorescently labeled circular chromosome in live yeast cells. We show that experimentally observed chromosome compaction and variance in compaction are reproduced only with tandem interactions between histone and condensin, not from either individually. The hierarchical loop structures that emerge upon incorporation of histone and condensin activities significantly impact the dynamic and structural properties of chromatin. Moreover, simulations reveal that tandem condensin-histone activity is responsible for higher order chromosomal structures, including recently observed Z-loops.


Subject(s)
Adenosine Triphosphatases/metabolism , Centromere/metabolism , Chromatin/metabolism , Chromosomes/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Molecular Dynamics Simulation , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Alleles , Chromatin/chemistry , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/chemistry , Computational Biology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Nucleosomes/chemistry , Nucleosomes/metabolism , Polymers/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Thermodynamics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...