Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 15(3): 161-176, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36961367

ABSTRACT

While bioanalytical outsourcing is widely adopted in the pharmaceutical industry, AbbVie is one of the few large biopharmaceutical companies having an internal bioanalytical unit to support nearly all its drug metabolism and pharmacokinetic studies. This article highlights our experience and perspective in building an integrated and centralized laboratory to provide early discovery and preclinical-stage bioanalytical support with high operational efficiency, cost-effectiveness and data integrity. The advantages of in-house nonregulated bioanalytical support include better control of data quality, faster turnaround times, real-time knowledge sharing and troubleshooting, and lower near- and long-term costs. The success of an in-house model depends upon a comprehensively optimized and streamlined workflow, fueled by continuous improvements and implementation of innovative technologies.


Subject(s)
Laboratories , Outsourced Services , Automation , Technology , Drug Industry
2.
J Med Chem ; 63(19): 11034-11044, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32881503

ABSTRACT

A research program to discover solubilizing prodrugs of the HCV NS5A inhibitor pibrentasvir (PIB) identified phosphomethyl analog 2 and trimethyl-lock (TML) prodrug 9. The prodrug moiety is attached to a benzimidazole nitrogen atom via an oxymethyl linkage to allow for rapid and complete release of the drug for absorption following phosphate removal by intestinal alkaline phosphatase. These prodrugs have good hydrolytic stability properties and improved solubility compared to PIB, both in aqueous buffer (pH 7) and FESSIF (pH 5). TML prodrug 9 provided superior in vivo performance, delivering high plasma concentrations of PIB in PK studies conducted in mice, dogs, and monkeys. The improved dissolution properties of these phosphate prodrugs provide them the potential to simplify drug dosage forms for PIB-containing HCV therapy.


Subject(s)
Antiviral Agents/chemistry , Benzimidazoles/chemistry , Prodrugs/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Area Under Curve , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Dogs , Mice , Prodrugs/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Solubility
3.
Bioorg Med Chem Lett ; 30(7): 126986, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32046903

ABSTRACT

Our HCV research program investigated novel 2'-dihalogenated nucleoside HCV polymerase inhibitors and identified compound 1, a 5'-phosphoramidate prodrug of 2'-deoxy-2'-α-bromo-ß-chloro uridine. Although 1 had a favorable in vitro activity profile in HCV replicons, oral dosing in dog resulted in low levels of the active 5'-triphosphate (TP) in liver. Metabolism studies using human hepatocytes provided a simple assay for screening alternative phosphoramidate prodrug analogs. Compounds that produced high TP concentrations in hepatocytes were tested in dog liver biopsy studies. This method identified 2-aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrug 14, which provided 100-fold higher TP concentrations in dog liver in comparison to 1 (4 and 24 h after 5 mg/kg oral dose).


Subject(s)
Antiviral Agents/pharmacology , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Aminoisobutyric Acids/metabolism , Aminoisobutyric Acids/pharmacokinetics , Aminoisobutyric Acids/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Deoxyuridine/metabolism , Deoxyuridine/pharmacokinetics , Dogs , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Hepatocytes/metabolism , Humans , Liver/metabolism , Microbial Sensitivity Tests , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Organophosphorus Compounds/pharmacology , Prodrugs/metabolism , Prodrugs/pharmacokinetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects
4.
Bioorg Med Chem ; 28(1): 115208, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31740203

ABSTRACT

Hepatitis C virus (HCV) nucleoside inhibitors have been a key focus of nearly 2 decades of HCV drug research due to a high barrier to drug resistance and pan-genotypic activity profile provided by molecules in this drug class. Our investigations focused on several potent 2'-halogenated uridine-based HCV polymerase inhibitors, resulting in the discovery of novel 2'-deoxy-2'-dihalo-uridine analogs that are potent inhibitors in replicon assays for all genotypes. Further studies to improve in vivo performance of these nucleoside inhibitors identified aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrugs 18a and 18c, which provide high levels of the active triphosphate in dog liver. AIBEE prodrug 18c was compared with sofosbuvir (1) by co-dosing both compounds by oral administration in dog (5 mg/kg each) and measuring liver concentrations of the active triphosphate metabolite at both 4 and 24 h post dosing. In this study, 18c provided liver triphosphate concentrations that were 6-fold higher than sofosbuvir (1) at both biopsy time points, suggesting that 18c could be a highly effective agent for treating HCV infected patients in the clinic.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Uridine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship , Uridine/analogs & derivatives , Uridine/chemistry , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...