Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Acta Crystallogr C Struct Chem ; 73(Pt 8): 620-624, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28776513

ABSTRACT

The tetraazamacrocyclic ligand 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) has been used to bind a variety of first-row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane-κ4N)cobalt(II) chloride dihydrate, [CoCl(C14H32N4)]Cl·2H2O or [CoIICl(TMC)]Cl·2H2O, crystallizes as a purple crystal. This species adopts a distorted square-pyramidal geometry in which the TMC ligand assumes the trans-I configuration and the chloride ion binds in the syn-methyl pocket of the ligand. The CoII ion adopts an S = 3/2 spin state, as measured by the Evans NMR method, and UV-visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoIICl(TMC)]Cl·2H2O are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.

2.
Dalton Trans ; 45(36): 14191-202, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27533922

ABSTRACT

Kß valence-to-core (V2C) X-emission spectroscopy (XES) has gained prominence as a tool for molecular inorganic chemists to probe the occupied valence orbitals of coordination complexes, as illustrated by recent evaluation of Kß V2C XES ranging from titanium to iron. However, cobalt Kß V2C XES has not been studied in detail, limiting the application of this technique to probe cobalt coordination in molecular catalysts and bioinorganic systems. In addition, the community still lacks a complete understanding of all factors that dictate the V2C peak area. In this manuscript, we report experimental cobalt Kß V2C XES spectra of low-spin octahedral Co(iii) complexes with different ligand donors, in conjunction with DFT calculations. Cobalt Kß V2C XES was demonstrated to be sensitive to cobalt-ligand coordination environments. Notably, we recognize here for the first time that there is a linear correlation between the V2C area and the spectrochemical series for low-spin octahedral cobalt(iii) complexes, with strong field π acceptor ligands giving rise to the largest V2C area. This unprecedented correlation is explained by invoking different levels of π-interaction between cobalt p orbitals and ligand orbitals that modulate the percentage of cobalt p orbital character in donor MOs, in combination with changes in the average cobalt-ligand distance.

3.
Chem Commun (Camb) ; 51(76): 14326-9, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26265081

ABSTRACT

We report the generation and spectroscopic characterization of a heterobimetallic [(TMC)Fe(III)-O-Cr(III)(OTf)4] species (1) by bubbling O2 into a mixture of Fe(TMC)(OTf)2 and Cr(OTf)2 in NCCH3. Complex 1 also formed quantitatively by adding Cr(OTf)2 to [Fe(IV)(O)(TMC)(NCCH3)](2+). The proposed O2 activation mechanism involves the trapping of a Cr-O2 adduct by Fe(TMC)(OTf)2.


Subject(s)
Chromium/chemistry , Ferric Compounds/chemistry , Oxygen/chemistry , Lactams, Macrocyclic/chemistry , Methylation
4.
J Am Chem Soc ; 137(10): 3478-81, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25743366

ABSTRACT

The apparent Sc(3+) adduct of [Fe(IV)(O)(TMC)](2+) (1, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) has been synthesized in amounts sufficient to allow its characterization by various spectroscopic techniques. Contrary to the earlier assignment of a +4 oxidation state for the iron center of 1, we establish that 1 has a high-spin iron(III) center based on its Mössbauer and EPR spectra and its quantitative reduction by 1 equiv of ferrocene to [Fe(II)(TMC)](2+). Thus, 1 is best described as a Sc(III)-O-Fe(III) complex, in agreement with previous DFT calculations (Swart, M. Chem. Commun. 2013, 49, 6650.). These results shed light on the interaction of Lewis acids with high-valent metal-oxo species.


Subject(s)
Ferric Compounds/chemistry , Iron/chemistry , Oxygen/chemistry , Scandium/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Quantum Theory , Spectroscopy, Mossbauer
5.
Chem Sci ; 5(3): 1204-1215, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24660055

ABSTRACT

Treatment of [FeII(L)](OTf)2 (4), (where L = 1,4,8-Me3cyclam-11-CH2C(O)NMe2) with iodosylbenzene yielded the corresponding S = 1 oxoiron(IV) complex [FeIV(O(L)](OTf)2 (5) in nearly quantitative yield. The remarkably high stability of 5 (t1/2 ≈ 5 days at 25 °C) facilitated its characterization by X-ray crystallography and a raft of spectroscopic techniques. Treatment of 5 with strong base was found to generate a distinct, significantly less stable S = 1 oxoiron(IV) complex, 6 (t1/2 ~ 1.5 hrs. at 0 °C), which could be converted back to 5 by addition of a strong acid; these observations indicate that 5 and 6 represent a conjugate acid-base pair. That 6 can be formulated as [FeIV(O)(L-H)](OTf) was further supported by ESI mass spectrometry, spectroscopic and electrochemical studies, and DFT calculations. The close structural similarity of 5 and 6 provided a unique opportunity to probe the influence of the donor trans to the FeIV=O unit upon its reactivity in H-atom transfer (HAT) and O-atom transfer (OAT), and 5 was found to display greater reactivity than 6 in both OAT and HAT. While the greater OAT reactivity of 5 is expected on the basis of its higher redox potential, its higher HAT reactivity does not follow the anti-electrophilic trend reported for a series of [FeIV(O)(TMC)(X)] complexes (TMC = tetramethylcyclam) and thus appears to be inconsistent with the Two-State Reactivity rationale that is the prevailing explanation for the relative facility of oxoiron(IV) complexes to undergo HAT.

6.
J Am Chem Soc ; 135(28): 10198-201, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23802702

ABSTRACT

We report that redox-inactive Sc(3+) can trigger O2 activation by the Fe(II)(TMC) center (TMC = tetramethylcyclam) to generate the corresponding oxoiron(IV) complex in the presence of BPh4(-) as an electron donor. To model a possible intermediate in the above reaction, we generated an unprecedented Sc(3+) adduct of [Fe(III)(η(2)-O2)(TMC)](+) by an alternative route, which was found to have an Fe(3+)-(µ-η(2):η(2)-peroxo)-Sc(3+) core and to convert to the oxoiron(IV) complex. These results have important implications for the role a Lewis acid can play in facilitating O-O bond cleavage during the course of O2 activation at non-heme iron centers.


Subject(s)
Ferrous Compounds/chemical synthesis , Organometallic Compounds/chemical synthesis , Oxygen/chemistry , Scandium/chemistry , Ferrous Compounds/chemistry , Organometallic Compounds/chemistry
7.
Angew Chem Int Ed Engl ; 51(36): 9132-6, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22888066

ABSTRACT

Nucleophilic oxidant: The reaction between a thiolato iron(II) complex 1 and superoxide in aprotic solvent at -90 °C yields a novel thiolato iron(III) peroxide intermediate 2, which exhibits unusually high nucleophilic reactivity. Compound 2 is an isomer of the thiolato iron(II) superoxide intermediate that is invoked in the reaction between superoxide reductase and superoxide.


Subject(s)
Coordination Complexes/chemistry , Ferric Compounds/chemistry , Peroxides/chemistry , Sulfhydryl Compounds/chemistry , Anions/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Superoxides/chemistry
8.
Proc Natl Acad Sci U S A ; 109(30): 11933-8, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22786933

ABSTRACT

Oxoiron(V) species are postulated to be involved in the mechanisms of the arene cis-dihydroxylating Rieske dioxygenases and of bioinspired nonheme iron catalysts for alkane hydroxylation, olefin cis-dihydroxylation, and water oxidation. In an effort to obtain a synthetic oxoiron(V) complex, we report herein the one-electron oxidation of the S = 1 complex [Fe(IV)(O)(TMC)(NCCH(3))](2+) (1, where TMC is tetramethylcyclam) by treatment with tert -butyl hydroperoxide and strong base in acetonitrile to generate a metastable complex 2 at -44 °C, which has been characterized by UV-visible, resonance Raman, Mössbauer, and EPR methods. The defining spectroscopic characteristic of 2 is the unusual x/y anisotropy observed for the (57)Fe and (17)O A tensors associated with the high-valent Fe═O unit and for the (14)N A tensor of a ligand derived from acetonitrile. As shown by detailed density functional theory (DFT) calculations, the unusual x/y anisotropy observed can only arise from an iron center with substantially different spin populations in the d(xz) and d(yz) orbitals, which cannot correspond to an Fe(IV)═O unit but is fully consistent with an Fe(V) center, like that found for [Fe(V)(O)(TAML)](-) (where TAML is tetraamido macrocyclic ligand), the only well-characterized oxoiron(V) complex reported. Mass spectral analysis shows that the generation of 2 entails the addition of an oxygen atom to 1 and the loss of one positive charge. Taken together, the spectroscopic data and DFT calculations support the formulation of 2 as an iron(V) complex having axial oxo and acetylimido ligands, namely [Fe(V)(O)(TMC)(NC(O)CH(3))](+).


Subject(s)
Electrons , Iron Isotopes/chemistry , Macromolecular Substances/chemistry , Oxygen Isotopes/chemistry , Anisotropy , Mass Spectrometry , Molecular Structure , Nitrogen Isotopes/chemistry , Oxidation-Reduction
9.
J Am Chem Soc ; 133(31): 11880-3, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21739994

ABSTRACT

The trigonal-bipyramidal high-spin (S = 2) oxoiron(IV) complex [Fe(IV)(O)(TMG(2)dien)(CH(3)CN)](2+) (7) was synthesized and spectroscopically characterized. Substitution of the CH(3)CN ligand by anions, demonstrated here for X = N(3)(-) and Cl(-), yielded additional S = 2 oxoiron(IV) complexes of general formulation [Fe(IV)(O)(TMG(2)dien)(X)](+) (7-X). The reduced steric bulk of 7 relative to the published S = 2 complex [Fe(IV)(O)(TMG(3)tren)](2+) (2) was reflected by enhanced rates of intermolecular substrate oxidation.


Subject(s)
Coordination Complexes/chemistry , Ferrous Compounds/chemistry , Molecular Structure , Quantum Theory
10.
J Am Chem Soc ; 133(19): 7256-9, 2011 May 18.
Article in English | MEDLINE | ID: mdl-21517091

ABSTRACT

We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted.


Subject(s)
Iron/chemistry , Organometallic Compounds , Oxygen/chemistry , Heme/chemistry , Molecular Structure
11.
Inorg Chem ; 49(14): 6535-44, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20565082

ABSTRACT

The electronic structures of a series of high-spin Ni(II)-thiolate complexes of the form [PhTt(tBu)]Ni(SR) (R = CPh(3), 2; C(6)F(5), 3; C(6)H(5), 4; PhTt(tBu) = phenyltris((tert-butylthio)methyl)borate) have been characterized using a combined spectroscopic and computational approach. Resonance Raman (rR) spectroscopic data reveal that the nu(Ni-SR) vibrational feature occurs between 404 and 436 cm(-1) in these species. The corresponding rR excitation profiles display a striking de-enhancement behavior because of interference effects involving energetically proximate electronic excited states. These data were analyzed in the framework of time-dependent Heller theory to obtain quantitative insight into excited state nuclear distortions. The electronic absorption and magnetic circular dichroism spectra of 2-4 are characterized by numerous charge transfer (CT) transitions. The dominant absorption feature, which occurs at approximately 18,000 cm(-1) in all three complexes, is assigned as a thiolate-to-Ni CT transition involving molecular orbitals that are of pi-symmetry with respect to the Ni-S bond, reminiscent of the characteristic absorption feature of blue copper proteins. Density functional theory computational data provide molecular orbital descriptions for 2-4 and allow for detailed assignments of the key spectral features. A comparison of the results obtained in this study to those reported for similar Ni-thiolate species reveals that the supporting ligand plays a secondary role in determining the spectroscopic properties, as the electronic structure is primarily determined by the metal-thiolate bonding interaction.


Subject(s)
Coordination Complexes/chemistry , Nickel/chemistry , Quantum Theory , Sulfhydryl Compounds/chemistry , Models, Molecular , Spectrum Analysis, Raman
12.
Inorg Chem ; 49(7): 3104-12, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20199095

ABSTRACT

A powerful means of enhancing our understanding of the structures and functions of enzymes that contain nickel-sulfur bonds, such as Ni superoxide dismutase, acetyl-coenzyme A synthase/carbon monoxide dehydrogenase, [NiFe] hydrogenase, and methyl-CoM reductase, involves the investigation of model compounds with similar structural and/or electronic properties. In this study, we have characterized a trans-mu-1,2-disulfido-bridged dinickel(II) species, [{(tmc)Ni}(2)(S(2))](2+) (1, tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) by using electronic absorption, magnetic circular dichroism (MCD), and resonance Raman (rR) spectroscopic techniques, as well as density functional theory (DFT) and time-dependent DFT computational methods. Our computational results, validated on the basis of the experimental MCD data and previously reported (1)H NMR spectra, reveal that 1 is best described as containing two antiferromagnetically coupled high-spin Ni(II) centers. A normal coordinate analysis of the rR vibrational data was performed to quantify the core bond strengths, yielding force constants of k(Ni-S) = 2.69 mdyn/A and k(S-S) = 2.40 mdyn/A. These values provide a useful basis for a comparison of metal-S/O bonding in 1 and related Ni(2)(O(2)), Cu(2)(O(2)), and Cu(2)(S(2)) dimers. In both the disulfido and the peroxo species, the lower effective nuclear charge of Ni(II) as compared to Cu(II) results in a decreased covalency, and thus relatively weaker metal-S/O bonding interactions in the Ni(2) dimers than in the Cu(2) complexes.


Subject(s)
Copper/chemistry , Disulfides/chemistry , Nickel/chemistry , Peroxides/chemistry , Models, Molecular , Quantum Theory , Spectrum Analysis
13.
Inorg Chem ; 49(7): 3113-20, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20199100

ABSTRACT

In this study, a combined spectroscopic and computational approach has been employed to generate a detailed description of the electronic structure of a binuclear side-on disulfido (Ni(II))(2) complex, [{(PhTt(tBu))Ni}(2)(mu-eta(2):eta(2)-S(2))] (1, where PhTt(tBu) = phenyltris[(tert-butylthio)methyl]borate). The disulfido-to-Ni(II) charge-transfer transitions that dominate the electronic absorption spectrum have been assigned on the basis of time-dependent density functional theory (DFT) calculations. Resonance Raman spectroscopic studies of 1 have revealed that the S-S stretching mode occurs at 446 cm(-1), indicating that the S-S bond is weaker in 1 than in the analogous mu-eta(2):eta(2)-S(2) dicopper species. DFT computational data indicate that the steric bulk of PhTt(tBu) stabilize the side-on core enough to prevent its conversion to the electronically preferred bis(mu-sulfido) (Ni(III))(2) structure. Hence, 1 provides an interesting contrast to its O(2)-derived analogue, [{(PhTt(tBu))Ni}(2)(mu-O)(2)], which was shown previously to assume a bis(mu-oxo) (Ni(III))(2) "diamond core". By a comparison of 1 to analogous disulfidodicopper and peroxodinickel species, new insight has been obtained into the roles that the metal centers, bridging ligands, and supporting ligands play in determining the core structures and electronic properties of these dimers.


Subject(s)
Copper/chemistry , Disulfides/chemistry , Nickel/chemistry , Peroxides/chemistry , Dimerization , Models, Molecular , Quantum Theory , Spectrum Analysis
14.
J Am Chem Soc ; 131(2): 440-1, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19099477

ABSTRACT

Reduction of elemental sulfur by a monovalent nickel precursor leads to a trans-1,2-mu-disulfidodinickel(II) complex assigned based on a combination of advanced spectroscopic methods in conjunction with density functional theory calculations. The disulfido linkage is characterized by an intense optical S --> Ni charge transfer transition at 650 nm, which causes a significant distortion of the Ni(2)S(2) core along an isotope-sensitive v(S-S) mode at 474 cm(-1), as demonstrated by the resonance Raman excitation profile of this vibrational feature.


Subject(s)
Disulfides/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Disulfides/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Organometallic Compounds/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
15.
Met Ions Life Sci ; 6: 417-60, 2009.
Article in English | MEDLINE | ID: mdl-20877802

ABSTRACT

Because of their complex geometric and electronic structures, the active sites and cofactors of bioorganometallic enzymes, which are characterized by their metal-carbon bonds, pose a major challenge for computational chemists. However, recent progress in computer technology and theoretical chemistry, along with insights gained from mechanistic, spectroscopic, and X-ray crystallographic studies, have established an excellent foundation for the successful completion of computational studies aimed at elucidating the electronic structures and catalytic cycles of these species. This chapter briefly reviews the most popular computational approaches employed in theoretical studies of bioorganometallic species and summarizes important information obtained from computational studies of (i) the enzymatic formation and cleavage of the Co-C bond of coenzyme B(12); (ii) the catalytic cycle of methyl-coenzyme M reductase and its nickel-containing cofactor F(430); (iii) the polynuclear active-site clusters of the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-coenzyme A synthase; and (iv) the magnetic properties of the active-site cluster of Fe-only hydrogenases.

16.
Inorg Chem ; 47(10): 3931-3, 2008 May 19.
Article in English | MEDLINE | ID: mdl-18410087

ABSTRACT

Activation of elemental sulfur by the monovalent nickel complex [PhTt (tBu)]Ni(CO) [PhTt(tBu)=phenyl{tris[(tert-butylmethyl)thio]methyl}borate] generates the disulfidodinickel(II) complex 2. This species is alternatively accessible via thermal decomposition of [PhTt (tBu)]Ni(SCPh3). Spectroscopic, magnetic, and X-ray diffraction studies establish that 2 contains a mu-eta(2):eta(2)-S2 ligand that fosters antiferromagnetic exchange coupling between the Ni (II) ions. This observation is in contrast to the lighter congener, oxygen, which strongly favors the bis(mu-oxo)dinickel(III) structure. 2 oxidizes PPh 3 to SPPh3 and reacts with O2, generating several products, one of which has been identified as [(PhTt (tBu))Ni]2(mu-S) (3).

17.
J Am Chem Soc ; 128(44): 14230-1, 2006 Nov 08.
Article in English | MEDLINE | ID: mdl-17076476

ABSTRACT

An "end-on" Ni2+-superoxo adduct has been prepared via two independent synthetic routes and its structure ascertained by spectroscopic and computational methods. The new structure type in nickel coordination chemistry is supported by resonance Raman and EPR spectroscopic features, the former displaying a high frequency nu (O-O) mode (1131 cm-1) consistent with significant superoxo character. The Ni2+-superoxo adduct oxidizes PPh3 to OPPh3 in quantitative yield.


Subject(s)
Heterocyclic Compounds/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Superoxides/chemistry , Molecular Structure , Spectrum Analysis, Raman
18.
Biochemistry ; 45(39): 11915-33, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-17002292

ABSTRACT

Methyl-coenzyme M reductase (MCR) catalyzes the final step in methane biosynthesis by methanogenic archaea and contains a redox-active nickel tetrahydrocorphin, coenzyme F430, at its active site. Spectroscopic and computational methods have been used to study a novel form of the coenzyme, called F330, which is obtained by reducing F430 with sodium borohydride (NaBH4). F330 exhibits a prominent absorption peak at 330 nm, which is blue shifted by 100 nm relative to F430. Mass spectrometric studies demonstrate that the tetrapyrrole ring in F330 has undergone reduction, on the basis of the incorporation of protium (or deuterium), upon treatment of F430 with NaBH4 (or NaBD4). One- and two-dimensional NMR studies show that the site of reduction is the exocyclic ketone group of the tetrahydrocorphin. Resonance Raman studies indicate that elimination of this pi-bond increases the overall pi-bond order in the conjugative framework. X-ray absorption, magnetic circular dichroism, and computational results show that F330 contains low-spin Ni(II). Thus, conversion of F430 to F330 reduces the hydrocorphin ring but not the metal. Conversely, reduction of F430 with Ti(III) citrate to generate F380 (corresponding to the active MCR(red1) state) reduces the Ni(II) to Ni(I) but does not reduce the tetrapyrrole ring system, which is consistent with other studies [Piskorski, R., and Jaun, B. (2003) J. Am. Chem. Soc. 125, 13120-13125; Craft, J. L., et al. (2004) J. Biol. Inorg. Chem. 9, 77-89]. The distinct origins of the absorption band shifts associated with the formation of F330 and F380 are discussed within the framework of our computational results. These studies on the nature of the product(s) of reduction of F430 are of interest in the context of the mechanism of methane formation by MCR and in relation to the chemistry of hydroporphinoid systems in general. The spectroscopic and time-dependent DFT calculations add important insight into the electronic structure of the nickel hydrocorphinate in its Ni(II) and Ni(I) valence states.


Subject(s)
Archaeal Proteins/chemistry , Metalloporphyrins/chemistry , Methanobacteriaceae/enzymology , Models, Chemical , Nickel/chemistry , Oxidoreductases/chemistry , Titanium/chemistry , Computer Simulation , Methanobacteriaceae/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Oxidation-Reduction , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...