Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hear Res ; 439: 108893, 2023 11.
Article in English | MEDLINE | ID: mdl-37806102

ABSTRACT

Early assessment of hearing aid benefit is crucial, as the extent to which hearing aids provide audible speech information predicts speech and language outcomes. A growing body of research has proposed neural envelope tracking as an objective measure of speech intelligibility, particularly for individuals unable to provide reliable behavioral feedback. However, its potential for evaluating speech intelligibility and hearing aid benefit in children with hearing loss remains unexplored. In this study, we investigated neural envelope tracking in children with permanent hearing loss through two separate experiments. EEG data were recorded while children listened to age-appropriate stories (Experiment 1) or an animated movie (Experiment 2) under aided and unaided conditions (using personal hearing aids) at multiple stimulus intensities. Neural envelope tracking was evaluated using a linear decoder reconstructing the speech envelope from the EEG in the delta band (0.5-4 Hz). Additionally, we calculated temporal response functions (TRFs) to investigate the spatio-temporal dynamics of the response. In both experiments, neural tracking increased with increasing stimulus intensity, but only in the unaided condition. In the aided condition, neural tracking remained stable across a wide range of intensities, as long as speech intelligibility was maintained. Similarly, TRF amplitudes increased with increasing stimulus intensity in the unaided condition, while in the aided condition significant differences were found in TRF latency rather than TRF amplitude. This suggests that decreasing stimulus intensity does not necessarily impact neural tracking. Furthermore, the use of personal hearing aids significantly enhanced neural envelope tracking, particularly in challenging speech conditions that would be inaudible when unaided. Finally, we found a strong correlation between neural envelope tracking and behaviorally measured speech intelligibility for both narrated stories (Experiment 1) and movie stimuli (Experiment 2). Altogether, these findings indicate that neural envelope tracking could be a valuable tool for predicting speech intelligibility benefits derived from personal hearing aids in hearing-impaired children. Incorporating narrated stories or engaging movies expands the accessibility of these methods even in clinical settings, offering new avenues for using objective speech measures to guide pediatric audiology decision-making.


Subject(s)
Deafness , Hearing Aids , Hearing Loss, Sensorineural , Speech Perception , Humans , Child , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/rehabilitation , Speech Intelligibility , Language , Speech Perception/physiology
2.
Hear Res ; 434: 108785, 2023 07.
Article in English | MEDLINE | ID: mdl-37172414

ABSTRACT

Behavioral tests are currently the gold standard in measuring speech intelligibility. However, these tests can be difficult to administer in young children due to factors such as motivation, linguistic knowledge and cognitive skills. It has been shown that measures of neural envelope tracking can be used to predict speech intelligibility and overcome these issues. However, its potential as an objective measure for speech intelligibility in noise remains to be investigated in preschool children. Here, we evaluated neural envelope tracking as a function of signal-to-noise ratio (SNR) in 14 5-year-old children. We examined EEG responses to natural, continuous speech presented at different SNRs ranging from -8 (very difficult) to 8 dB SNR (very easy). As expected delta band (0.5-4 Hz) tracking increased with increasing stimulus SNR. However, this increase was not strictly monotonic as neural tracking reached a plateau between 0 and 4 dB SNR, similarly to the behavioral speech intelligibility outcomes. These findings indicate that neural tracking in the delta band remains stable, as long as the acoustical degradation of the speech signal does not reflect significant changes in speech intelligibility. Theta band tracking (4-8 Hz), on the other hand, was found to be drastically reduced and more easily affected by noise in children, making it less reliable as a measure of speech intelligibility. By contrast, neural envelope tracking in the delta band was directly associated with behavioral measures of speech intelligibility. This suggests that neural envelope tracking in the delta band is a valuable tool for evaluating speech-in-noise intelligibility in preschoolers, highlighting its potential as an objective measure of speech in difficult-to-test populations.


Subject(s)
Speech Intelligibility , Speech Perception , Child, Preschool , Humans , Speech Perception/physiology , Noise/adverse effects , Signal-To-Noise Ratio , Speech Reception Threshold Test
3.
J Assoc Res Otolaryngol ; 22(4): 465-480, 2021 07.
Article in English | MEDLINE | ID: mdl-33861393

ABSTRACT

Developmental dyslexia is most commonly associated with phonological processing difficulties. However, children with dyslexia may experience poor speech-in-noise perception as well. Although there is an ongoing debate whether a speech perception deficit is inherent to dyslexia or acts as an aggravating risk factor compromising learning to read indirectly, improving speech perception might boost reading-related skills and reading acquisition. In the current study, we evaluated advanced speech technology as applied in auditory prostheses, to promote and eventually normalize speech perception of school-aged children with dyslexia, i.e., envelope enhancement (EE). The EE strategy automatically detects and emphasizes onset cues and consequently reinforces the temporal structure of the speech envelope. Our results confirmed speech-in-noise perception difficulties by children with dyslexia. However, we found that exaggerating temporal "landmarks" of the speech envelope (i.e., amplitude rise time and modulations)-by using EE-passively and instantaneously improved speech perception in noise for children with dyslexia. Moreover, the benefit derived from EE was large enough to completely bridge the initial gap between children with dyslexia and their typical reading peers. Taken together, the beneficial outcome of EE suggests an important contribution of the temporal structure of the envelope to speech perception in noise difficulties in dyslexia, providing an interesting foundation for future intervention studies based on auditory and speech rhythm training.


Subject(s)
Dyslexia , Noise , Speech Perception , Speech , Child , Dyslexia/therapy , Female , Humans , Male , Speech Acoustics
4.
Ear Hear ; 40(5): 1242-1252, 2019.
Article in English | MEDLINE | ID: mdl-30844835

ABSTRACT

OBJECTIVES: Increasing evidence exists that poor speech perception abilities precede the phonological deficits typically observed in dyslexia, a developmental disorder in learning to read. Impaired processing of dynamic features of speech, such as slow amplitude fluctuations and transient acoustic cues, disrupts effortless tracking of the speech envelope and constrains the development of adequate phonological skills. In this study, a speech envelope enhancement (EE) strategy was implemented to reduce speech perception deficits by students with dyslexia. The EE emphasizes onset cues and reinforces the temporal structure of the speech envelope specifically. DESIGN: Speech perception was assessed in 42 students with and without dyslexia using a sentence repetition task in a speech-weighted background noise. Both natural and vocoded speech were used to assess the contribution of the temporal envelope on the speech perception deficit. Their envelope-enhanced counterparts were added to each baseline condition to administer the effect of the EE algorithm. In addition to speech-in-noise perception, general cognitive abilities were assessed. RESULTS: Results demonstrated that students with dyslexia not only benefit from EE but benefit more from it than typical readers. Hence, EE completely normalized speech reception thresholds for students with dyslexia under adverse listening conditions. In addition, a correlation between speech perception deficits and phonological processing was found for students with dyslexia, further supporting the relation between speech perception abilities and reading skills. Similar results and relations were found for conditions with natural and vocoded speech, providing evidence that speech perception deficits in dyslexia stem from difficulties in processing the temporal envelope. CONCLUSIONS: Using speech EE, speech perception skills in students with dyslexia were improved passively and instantaneously, without requiring any explicit learning. In addition, the observed positive relationship between speech processing and advanced phonological skills opens new avenues for specific intervention strategies that directly target the potential core deficit in dyslexia.


Subject(s)
Dyslexia/physiopathology , Speech Perception/physiology , Acoustic Stimulation/methods , Adolescent , Adult , Female , Humans , Male , Phonetics , Signal Processing, Computer-Assisted , Young Adult
5.
Cortex ; 113: 128-140, 2019 04.
Article in English | MEDLINE | ID: mdl-30640141

ABSTRACT

In recent studies phonological deficits in dyslexia are related to a deficit in the synchronization of neural oscillations to the dynamics of the speech envelope. The temporal features of both amplitude modulations and rise times characterize the speech envelope. Previous studies uncovered the inefficiency of the dyslexic brain to follow different amplitude modulations in speech. However, it remains to be investigated how the envelope's rise time mediates this neural processing. In this study we examined neural synchronization in students with and without dyslexia using auditory steady-state responses at theta, alpha, beta and low-gamma range oscillations (i.e., 4, 10, 20 and 40 Hz) to stimuli with different envelope rise times. Our results revealed reduced neural synchronization in the alpha, beta and low-gamma frequency ranges in dyslexia. Moreover, atypical neural synchronization was modulated by rise time for alpha and beta oscillations, showing that deficits found at 10 and 20 Hz were only evident when the envelope's rise time was significantly shortened. This impaired tracking of rise time cues may very well lead to the speech and phonological processing difficulties observed in dyslexia.


Subject(s)
Auditory Perception/physiology , Brain Waves/physiology , Brain/physiopathology , Dyslexia/physiopathology , Neurons/physiology , Acoustic Stimulation , Adolescent , Adult , Auditory Cortex/physiopathology , Electroencephalography , Female , Humans , Male , Speech Perception/physiology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...