Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36140120

ABSTRACT

Pesticides are used in agriculture to prevent pests. Chlorpyrifos (CHLP) is an insecticide with potentially detrimental effects on humans, bees, and the aquatic environment. Its effects have led to a total ban by the European Union (EU), but outside the EU, CHLP is still produced and used. An indirect lateral flow immunoassay (LFIA) for the detection of CHLP was developed and integrated into a cassette to create a lateral flow device (LFD). Species-specific reporter antibodies were coupled to carbon nanoparticles to create a detector conjugate. Water samples were mixed with a specific CHLP monoclonal antibody and detector conjugate and applied to the LFD. Dose-response curves elicited the detection of low concentrations of CHLP (<1 µg/L). This sensitivity was recorded through a rapid handheld digital imaging device but also visually by naked eye. The CHLP LFD was applied to a range of European surface water samples, fortified with CHLP, revealing a sensitivity in these matrices of 2 µg/L, both by digital and visual analysis. To improve the simplicity of the CHLP LFIA, the assay reagents were dried in tubes, enabling to carry out the test by simply adding water samples and inserting the LFIA strips. This CHLP LFIA is thus suited for the on-site screening of surface waters.


Subject(s)
Chlorpyrifos , Insecticides , Nanoparticles , Animals , Antibodies, Monoclonal , Carbon , Humans , Immunoassay/methods , Limit of Detection , Water
2.
Anal Bioanal Chem ; 409(15): 3877-3889, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28417173

ABSTRACT

In most countries, systems are in place to analyse food products for the potential presence of genetically modified organisms (GMOs), to enforce labelling requirements and to screen for the potential presence of unauthorised GMOs. With the growing number of GMOs on the world market, a larger diversity of methods is required for informative analyses. In this paper, the specificity of an extended screening set consisting of 32 screening methods to identify different crop species (endogenous genes) and GMO elements was verified against 59 different GMO reference materials. In addition, a cost- and time-efficient strategy for DNA isolation, screening and identification is presented. A module for semiautomated analysis of the screening results and planning of subsequent event-specific tests for identification has been developed. The Excel-based module contains information on the experimentally verified specificity of the element methods and of the EU authorisation status of the GMO events. If a detected GMO element cannot be explained by any of the events as identified in the same sample, this may indicate the presence of an unknown unauthorised GMO that may not yet have been assessed for its safety for humans, animals or the environment.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Food, Genetically Modified , Plants, Genetically Modified/genetics , Polymerase Chain Reaction/methods , DNA, Plant/isolation & purification , Food Analysis/methods , Polymerase Chain Reaction/economics
3.
Microb Ecol ; 62(4): 948-58, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21448673

ABSTRACT

Previous research had shown that three closely related species of Lysobacter, i.e., Lysobacter antibioticus, Lysobacter capsici, and Lysobacter gummosus, were present in different Rhizoctonia-suppressive soils. However, the population dynamics of these three Lysobacter spp. in different habitats remains unknown. Therefore, a specific primer-probe combination was designed for the combined quantification of these three Lysobacter spp. using TaqMan. Strains of the three target species were efficiently detected with TaqMan, whereas related non-target strains of Lysobacter enzymogenes and Xanthomonas campestris were not or only weakly amplified. Indigenous Lysobacter populations were analyzed in soils of 10 organic farms in the Netherlands during three subsequent years with TaqMan. These soils differed in soil characteristics and crop rotation. Additionally, Lysobacter populations in rhizosphere and bulk soil of different crops on one of these farms were studied. In acid sandy soils low Lysobacter populations were present, whereas pH neutral clay soils contained high populations (respectively, <4.0-5.87 and 6.22-6.95 log gene copy numbers g(-1) soil). Clay content, pH and C/N ratio, but not organic matter content in soil, correlated with higher Lysobacter populations. Unexpectedly, different crops did not significantly influence population size of the three Lysobacter spp. and their populations were barely higher in rhizosphere than in bulk soil.


Subject(s)
DNA Primers/genetics , Lysobacter/growth & development , Soil Microbiology , Agriculture/methods , Base Sequence , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Lysobacter/classification , Lysobacter/genetics , Lysobacter/isolation & purification , Molecular Sequence Data , Netherlands , Real-Time Polymerase Chain Reaction , Soil/analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...