Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Mol Autism ; 15(1): 19, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711098

ABSTRACT

BACKGROUND: Most children with Autism Spectrum Disorder (ASD) have co-occurring language impairments and some of these autism-specific language difficulties are also present in their non-autistic first-degree relatives. One of the possible neural mechanisms associated with variability in language functioning is alterations in cortical gamma-band oscillations, hypothesized to be related to neural excitation and inhibition balance. METHODS: We used a high-density 128-channel electroencephalography (EEG) to register brain response to speech stimuli in a large sex-balanced sample of participants: 125 youth with ASD, 121 typically developing (TD) youth, and 40 unaffected siblings (US) of youth with ASD. Language skills were assessed with Clinical Evaluation of Language Fundamentals. RESULTS: First, during speech processing, we identified significantly elevated gamma power in ASD participants compared to TD controls. Second, across all youth, higher gamma power was associated with lower language skills. Finally, the US group demonstrated an intermediate profile in both language and gamma power, with nonverbal IQ mediating the relationship between gamma power and language skills. LIMITATIONS: We only focused on one of the possible neural contributors to variability in language functioning. Also, the US group consisted of a smaller number of participants in comparison to the ASD or TD groups. Finally, due to the timing issue in EEG system we have provided only non-phase-locked analysis. CONCLUSIONS: Autistic youth showed elevated gamma power, suggesting higher excitation in the brain in response to speech stimuli and elevated gamma power was related to lower language skills. The US group showed an intermediate pattern of gamma activity, suggesting that the broader autism phenotype extends to neural profiles.


Subject(s)
Autism Spectrum Disorder , Electroencephalography , Gamma Rhythm , Humans , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Male , Female , Adolescent , Child , Language , Family , Siblings
2.
Autism Res ; 16(12): 2364-2377, 2023 12.
Article in English | MEDLINE | ID: mdl-37776030

ABSTRACT

In youth broadly, EEG frontal alpha asymmetry (FAA) associates with affective style and vulnerability to psychopathology, with relatively stronger right activity predicting risk for internalizing and externalizing behaviors. In autistic youth, FAA has been related to ASD diagnostic features and to internalizing symptoms. Among our large, rigorously characterized, sex-balanced participant group, we attempted to replicate findings suggestive of altered FAA in youth with an ASD diagnosis, examining group differences and impact of sex assigned at birth. Second, we examined relations between FAA and behavioral variables (ASD features, internalizing, and externalizing) within autistic youth, examining effects by sex. Third, we explored whether the relation between FAA, autism features, and mental health was informed by maternal depression history. In our sample, FAA did not differ by diagnosis, age, or sex. However, youth with ASD had lower total frontal alpha power than youth without ASD. For autistic females, FAA and bilateral frontal alpha power correlated with social communication features, but not with internalizing or externalizing symptoms. For autistic males, EEG markers correlated with social communication features, and with externalizing behaviors. Exploratory analyses by sex revealed further associations between youth FAA, behavioral indices, and maternal depression history. In summary, findings suggest that individual differences in FAA may correspond to social-emotional and mental health behaviors, with different patterns of association for females and males with ASD. Longitudinal consideration of individual differences across levels of analysis (e.g., biomarkers, family factors, and environmental influences) will be essential to parsing out models of risk and resilience among autistic youth.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Infant, Newborn , Humans , Male , Female , Adolescent , Autistic Disorder/complications , Sex Characteristics , Autism Spectrum Disorder/psychology , Emotions , Electroencephalography
3.
Neuroinformatics ; 21(2): 243-246, 2023 04.
Article in English | MEDLINE | ID: mdl-36725822

ABSTRACT

Accessing research data at any time is what FAIR (Findable Accessible Interoperable Reusable) data sharing aims to achieve at scale. Yet, we argue that it is not sustainable to keep accumulating and maintaining all datasets for rapid access, considering the monetary and ecological cost of maintaining repositories. Here, we address the issue of cold data storage: when to dispose of data for offline storage, how can this be done while maintaining FAIR principles and who should be responsible for cold archiving and long-term preservation.


Subject(s)
Information Dissemination , Information Storage and Retrieval
4.
Front Neurosci ; 16: 1040085, 2022.
Article in English | MEDLINE | ID: mdl-36466170

ABSTRACT

Autism Spectrum Disorder (ASD) is a developmental condition characterized by social and communication differences. Recent research suggests ASD affects 1-in-44 children in the United States. ASD is diagnosed more commonly in males, though it is unclear whether this diagnostic disparity is a result of a biological predisposition or limitations in diagnostic tools, or both. One hypothesis centers on the 'female protective effect,' which is the theory that females are biologically more resistant to the autism phenotype than males. In this examination, phenotypic data were acquired and combined from four leading research institutions and subjected to multivariate linear discriminant analysis. A linear discriminant model was trained on the training set and then deployed on the test set to predict group membership. Multivariate analyses of variance were performed to confirm the significance of the overall analysis, and individual analyses of variance were performed to confirm the significance of each of the resulting linear discriminant axes. Two discriminant dimensions were identified between the groups: a dimension separating groups by the diagnosis of ASD (LD1: 87% of variance explained); and a dimension reflective of a diagnosis-by-sex interaction (LD2: 11% of variance explained). The strongest discriminant coefficients for the first discriminant axis divided the sample in domains with known differences between ASD and comparison groups, such as social difficulties and restricted repetitive behavior. The discriminant coefficients for the second discriminant axis reveal a more nuanced disparity between boys with ASD and girls with ASD, including executive functioning and high-order behavioral domains as the dominant discriminators. These results indicate that phenotypic differences between males and females with and without ASD are identifiable using parent report measures, which could be utilized to provide additional specificity to the diagnosis of ASD in female patients, potentially leading to more targeted clinical strategies and therapeutic interventions. The study helps to isolate a phenotypic basis for future empirical work on the female protective effect using neuroimaging, EEG, and genomic methodologies.

5.
Neuroreport ; 33(7): 291-296, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35594442

ABSTRACT

OBJECTIVE: Higher volume fraction of perivascular space (PVS) has recently been reported in Parkinson's disease (PD) and related disorders. Both elevated PVS and altered levels of neurometabolites, assayed by proton magnetic resonance spectroscopy (MRS), are suspected indicators of neuroinflammation, but no published reports have concurrently examined PVS and MRS neurometabolites. METHODS: In an exploratory pilot study, we acquired multivoxel 3-T MRS using a semi-Localization by Adiabatic SElective Refocusing (sLASER) pulse-sequence (repetition time/echo time = 2810/60 ms, voxels 10 × 10 × 10 mm3) from a 2D slab sampling bilateral frontal white matter (FWM) and anterior middle cingulate cortex (aMCC). PVS maps obtained from high-resolution (0.8 × 0.8 × 0.8 mm3) T1-weighted MRI were co-registered with MRS. In each MRS voxel, PVS volume and neurometabolite levels were measured. RESULTS: Linear regression accounting for age, sex, and BMI found greater PVS volume for higher levels of choline-containing compounds (Cho; P = 0.047) in FWM and lower PVS volume for higher levels of N-acetyl compounds (NAA; P = 0.012) in aMCC. Since (putatively) higher Cho is associated with inflammation while NAA has anti-inflammatory properties, these observations add to evidence that higher PVS load is a sign of inflammation. Additionally, lower Montreal Cognitive Assessment scores were associated with lower NAA in aMCC (P = 0.002), suggesting that local neuronal dysfunction and inflammation contribute to cognitive impairment in PD. CONCLUSION: These exploratory findings indicate that co-analysis of PVS and MRS is feasible and may help elucidate the cellular and metabolic substrates of glymphatic and inflammatory processes in PD.


Subject(s)
Parkinson Disease , Aspartic Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Creatine/metabolism , Feasibility Studies , Humans , Inflammation/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Parkinson Disease/metabolism , Pilot Projects
6.
Brain ; 145(1): 378-387, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34050743

ABSTRACT

The biological mechanisms underlying the greater prevalence of autism spectrum disorder in males than females remain poorly understood. One hypothesis posits that this female protective effect arises from genetic load for autism spectrum disorder differentially impacting male and female brains. To test this hypothesis, we investigated the impact of cumulative genetic risk for autism spectrum disorder on functional brain connectivity in a balanced sample of boys and girls with autism spectrum disorder and typically developing boys and girls (127 youth, ages 8-17). Brain connectivity analyses focused on the salience network, a core intrinsic functional connectivity network which has previously been implicated in autism spectrum disorder. The effects of polygenic risk on salience network functional connectivity were significantly modulated by participant sex, with genetic load for autism spectrum disorder influencing functional connectivity in boys with and without autism spectrum disorder but not girls. These findings support the hypothesis that autism spectrum disorder risk genes interact with sex differential processes, thereby contributing to the male bias in autism prevalence and proposing an underlying neurobiological mechanism for the female protective effect.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Brain , Brain Mapping , Child , Female , Humans , Magnetic Resonance Imaging , Male
7.
J Autism Dev Disord ; 52(1): 454-462, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33682042

ABSTRACT

Aggressive behaviors are common among youth with autism spectrum disorder (ASD) and correlate with pervasive social-emotional difficulties. Communication skill is an important correlate of disruptive behavior in typical development, and clarification of links between communication and aggression in ASD may inform intervention methods. We investigate child/family factors and communication in relation to aggression among 145 individuals with ASD (65 female; ages 8-17 years). Overall, more severe aggression was associated with younger age, lower family income, and difficulties with communication skills. However, this pattern of results was driven by males, and aggression was unrelated to child or family characteristics for females. Future work should incorporate these predictors in conjunction with broader contextual factors to understand aggressive behavior in females with ASD.


Subject(s)
Autism Spectrum Disorder , Adolescent , Aggression , Child , Communication , Female , Humans , Language , Male
8.
J Neurodev Disord ; 13(1): 33, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34517813

ABSTRACT

BACKGROUND: Identification of ASD biomarkers is a key priority for understanding etiology, facilitating early diagnosis, monitoring developmental trajectories, and targeting treatment efforts. Efforts have included exploration of resting state encephalography (EEG), which has a variety of relevant neurodevelopmental correlates and can be collected with minimal burden. However, EEG biomarkers may not be equally valid across the autism spectrum, as ASD is strikingly heterogeneous and individual differences may moderate EEG-behavior associations. Biological sex is a particularly important potential moderator, as females with ASD appear to differ from males with ASD in important ways that may influence biomarker accuracy. METHODS: We examined effects of biological sex, age, and ASD diagnosis on resting state EEG among a large, sex-balanced sample of youth with (N = 142, 43% female) and without (N = 138, 49% female) ASD collected across four research sites. Absolute power was extracted across five frequency bands and nine brain regions, and effects of sex, age, and diagnosis were analyzed using mixed-effects linear regression models. Exploratory partial correlations were computed to examine EEG-behavior associations in ASD, with emphasis on possible sex differences in associations. RESULTS: Decreased EEG power across multiple frequencies was associated with female sex and older age. Youth with ASD displayed decreased alpha power relative to peers without ASD, suggesting increased neural activation during rest. Associations between EEG and behavior varied by sex. Whereas power across various frequencies correlated with social skills, nonverbal IQ, and repetitive behavior for males with ASD, no such associations were observed for females with ASD. CONCLUSIONS: Research using EEG as a possible ASD biomarker must consider individual differences among participants, as these features influence baseline EEG measures and moderate associations between EEG and important behavioral outcomes. Failure to consider factors such as biological sex in such research risks defining biomarkers that misrepresent females with ASD, hindering understanding of the neurobiology, development, and intervention response of this important population.


Subject(s)
Autism Spectrum Disorder , Adolescent , Aged , Autism Spectrum Disorder/diagnosis , Brain , Electroencephalography , Female , Humans , Male , Phenotype , Sex Characteristics
9.
Brain ; 144(6): 1911-1926, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33860292

ABSTRACT

Females versus males are less frequently diagnosed with autism spectrum disorder (ASD), and while understanding sex differences is critical to delineating the systems biology of the condition, female ASD is understudied. We integrated functional MRI and genetic data in a sex-balanced sample of ASD and typically developing youth (8-17 years old) to characterize female-specific pathways of ASD risk. Our primary objectives were to: (i) characterize female ASD (n = 45) brain response to human motion, relative to matched typically developing female youth (n = 45); and (ii) evaluate whether genetic data could provide further insight into the potential relevance of these brain functional differences. For our first objective we found that ASD females showed markedly reduced response versus typically developing females, particularly in sensorimotor, striatal, and frontal regions. This difference between ASD and typically developing females does not resemble differences between ASD (n = 47) and typically developing males (n = 47), even though neural response did not significantly differ between female and male ASD. For our second objective, we found that ASD females (n = 61), versus males (n = 66), showed larger median size of rare copy number variants containing gene(s) expressed in early life (10 postconceptual weeks to 2 years) in regions implicated by the typically developing female > female functional MRI contrast. Post hoc analyses suggested this difference was primarily driven by copy number variants containing gene(s) expressed in striatum. This striatal finding was reproducible among n = 2075 probands (291 female) from an independent cohort. Together, our findings suggest that striatal impacts may contribute to pathways of risk in female ASD and advocate caution in drawing conclusions regarding female ASD based on male-predominant cohorts.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Sex Characteristics , Adolescent , Child , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , DNA Copy Number Variations , Female , Genotype , Humans , Magnetic Resonance Imaging , Male , Neuroimaging/methods
10.
Parkinsonism Relat Disord ; 86: 19-26, 2021 05.
Article in English | MEDLINE | ID: mdl-33819900

ABSTRACT

INTRODUCTION: Cognitive deficits occur in Parkinson's disease (PD). Cardiorespiratory fitness (CRF) is associated with better cognitive performance in aging especially in executive function (EF) and memory. The association between CRF and cognitive performance is understudied in people with PD. Brain structures underlying associations also remains unknown. This cross-sectional study examined the associations between CRF and cognitive performance in PD. We also examined associations between CRF and brain structures impacted in PD. Mediation analysis were conducted to examine whether brain structures impacted in PD mediate putative associations between CRF and cognitive performance. METHODS: Individuals with PD (N = 33) underwent magnetic resonance imaging (MRI), CRF evaluation (estimated VO2max), and neuropsychological assessment. Composite cognitive scores of episodic memory, EF, attention, language, and visuospatial functioning were generated. Structural equation models were constructed to examine whether MRI volume estimates (thalamus and pallidum) mediated associations between CRF and cognitive performance (adjusting for age, education, PD disease duration, sex, MDS-UPDRS motor score, and total intracranial volume). RESULTS: Higher CRF was associated with better episodic memory (Standardized ß = 0.391; p = 0.008), EF (Standardized ß = 0.324; p = 0.025), and visuospatial performance (Standardized ß = 0.570; p = 0.005). Higher CRF was associated with larger thalamic (Standardized ß = 0.722; p = 0.004) and pallidum (Standardized ß = 0.635; p = 0.004) volumes. Thalamic volume mediated the association between higher CRF and better EF (Indirect effect = 0.309) and episodic memory (Indirect effect = 0.209) performance (p < 0.05). The pallidum did not significantly mediate associations between CRF and cognitive outcomes. CONCLUSION: The thalamus plays an important role in the association between CRF and both EF and episodic memory in PD.


Subject(s)
Cardiorespiratory Fitness/physiology , Cognitive Dysfunction/physiopathology , Parkinson Disease/physiopathology , Thalamus/physiopathology , Aged , Cognition/physiology , Cognitive Dysfunction/etiology , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/complications
11.
Autism ; 25(6): 1565-1579, 2021 08.
Article in English | MEDLINE | ID: mdl-33715473

ABSTRACT

LAY ABSTRACT: Adaptive functioning refers to skills that are vital to success in day-to-day life, including daily living (e.g. grocery shopping, food preparation, transportation use), communication (e.g. verbal expression of needs), and socialization skills (e.g. interpersonal skills, including expressing and recognizing emotions, and understanding turn-taking in conversation). Among autistic individuals without intellectual disability, adaptive functioning is not commensurate with intellectual ability (IQ), and instead a gap exists between these individuals' intellectual ability and their adaptive skills. Further, these autistic individuals show a widening of this gap with increasing age. Existing studies of the gap between IQ and adaptive functioning have studied predominantly male samples. Thus, we do not know if the gap also exists in autistic females. We therefore looked at adaptive functioning and the gap between IQ and adaptive functioning in a large sample of autistic girls and boys without intellectual disability. To disentangle effects of group (autistic vs typically developing) from effects of sex (girls vs boys), we compared autistic girls and boys to one another as well as to their same-sex typically developing peers. Analyses took into consideration differences in IQ between autistic and typically developing youth. We found autistic girls, like autistic boys, show lower adaptive functioning than their same-sex typically developing peers. Results underscore the need to evaluate adaptive functioning in autistic individuals without intellectual disability and to provide necessary supports. The large gap between intellectual ability and socialization skills, in particular, may be of critical importance in improving our understanding of outcomes and mental health difficulties among autistic females.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Adolescent , Female , Humans , Male , Sex Characteristics , Social Skills
12.
IEEE Trans Emerg Top Comput ; 9(1): 316-328, 2021.
Article in English | MEDLINE | ID: mdl-35548703

ABSTRACT

Data science is a field that has developed to enable efficient integration and analysis of increasingly large data sets in many domains. In particular, big data in genetics, neuroimaging, mobile health, and other subfields of biomedical science, promises new insights, but also poses challenges. To address these challenges, the National Institutes of Health launched the Big Data to Knowledge (BD2K) initiative, including a Training Coordinating Center (TCC) tasked with developing a resource for personalized data science training for biomedical researchers. The BD2K TCC web portal is powered by ERuDIte, the Educational Resource Discovery Index, which collects training resources for data science, including online courses, videos of tutorials and research talks, textbooks, and other web-based materials. While the availability of so many potential learning resources is exciting, they are highly heterogeneous in quality, difficulty, format, and topic, making the field intimidating to enter and difficult to navigate. Moreover, data science is rapidly evolving, so there is a constant influx of new materials and concepts. We leverage data science techniques to build ERuDIte itself, using data extraction, data integration, machine learning, information retrieval, and natural language processing to automatically collect, integrate, describe, and organize existing online resources for learning data science.

13.
Autism Res ; 14(1): 156-168, 2021 01.
Article in English | MEDLINE | ID: mdl-33274604

ABSTRACT

Despite advances in early detection, the average age of autism spectrum disorder (ASD) diagnosis exceeds 4 years and is often later in females. In typical development, biological sex predicts inter-individual variation across multiple developmental milestones, with females often exhibiting earlier progression. The goal of this study was to examine sex differences in caregiver-reported developmental milestones (first word, phrase, walking) and their contribution to timing of initial concerns expressed by caregivers and eventual age of diagnosis. 195 (105 males) children and adolescents aged 8 to 17 years with a clinical diagnosis of ASD were recruited to the study (mean IQ = 99.76). While developmental milestones did not predict timing of diagnosis or age parents first expressed concerns, females had earlier first words and phrases than males. There was a marginal difference in the age of diagnosis, with females receiving their diagnosis 1 year later than males. Despite sex differences in developmental milestones and diagnostic variables, IQ was the most significant predictor in the timing of initial concerns and eventual diagnosis, suggesting children with lower IQ, regardless of sex, are identified and diagnosed earlier. Overall, biological sex and developmental milestones did not account for a large proportion of variance for the eventual age of ASD diagnosis, suggesting other factors (such as IQ and the timing of initial concerns) are potentially more influential. LAY SUMMARY: In this study, a later age of diagnosis in females having ASD was confirmed; however, biological sex was not the stronger predictor of age of diagnosis. Parents reported that females learned language more quickly than males, and parents noted their first concerns when females were older than males. In this sample, the strongest predictor of age of diagnosis was the age of first concerns.


Subject(s)
Autism Spectrum Disorder , Adolescent , Autism Spectrum Disorder/diagnosis , Child, Preschool , Early Diagnosis , Female , Humans , Male , Parents , Time
14.
Cell Rep ; 32(7): 108029, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814038

ABSTRACT

Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking. Here, we develop a scalable footprinting workflow using two state-of-the-art algorithms: Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE DNase-seq experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We demonstrate that the locations, depth, and tissue specificity of footprints predict effects of genetic variants on gene expression and capture a substantial proportion of genetic risk for complex traits.


Subject(s)
Binding Sites/genetics , Deoxyribonucleases/metabolism , Genomics/methods , Transcription Factors/metabolism , Humans
15.
Transl Psychiatry ; 10(1): 178, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488083

ABSTRACT

Autism is hypothesized to be in part driven by a reduced sensitivity to the inherently rewarding nature of social stimuli. Previous neuroimaging studies have indicated that autistic males do indeed display reduced neural activity to social rewards, but it is unknown whether this finding extends to autistic females, particularly as behavioral evidence suggests that affected females may not exhibit the same reduction in social motivation as their male peers. We therefore used functional magnetic resonance imaging to examine social reward processing during an instrumental implicit learning task in 154 children and adolescents (ages 8-17): 39 autistic girls, 43 autistic boys, 33 typically developing girls, and 39 typically developing boys. We found that autistic girls displayed increased activity to socially rewarding stimuli, including greater activity in the nucleus accumbens relative to autistic boys, as well as greater activity in lateral frontal cortices and the anterior insula compared with typically developing girls. These results demonstrate for the first time that autistic girls do not exhibit the same reduction in activity within social reward systems as autistic boys. Instead, autistic girls display increased neural activation to such stimuli in areas related to reward processing and salience detection. Our findings indicate that a reduced sensitivity to social rewards, as assessed with a rewarded instrumental implicit learning task, does not generalize to affected female youth and highlight the importance of studying potential sex differences in autism to improve our understanding of the condition and its heterogeneity.


Subject(s)
Autistic Disorder , Adolescent , Attention , Child , Female , Humans , Magnetic Resonance Imaging , Male , Motivation , Reward
16.
Cereb Cortex ; 30(9): 5107-5120, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32350530

ABSTRACT

Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8-17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain/physiopathology , Neural Pathways/physiopathology , Sex Characteristics , Adolescent , Brain Mapping/methods , Child , Female , Humans , Magnetic Resonance Imaging , Male
17.
Transl Psychiatry ; 10(1): 82, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127526

ABSTRACT

Autism spectrum disorder (ASD) is more prevalent in males than in females, but the neurobiological mechanisms that give rise to this sex-bias are poorly understood. The female protective hypothesis suggests that the manifestation of ASD in females requires higher cumulative genetic and environmental risk relative to males. Here, we test this hypothesis by assessing the additive impact of several ASD-associated OXTR variants on reward network resting-state functional connectivity in males and females with and without ASD, and explore how genotype, sex, and diagnosis relate to heterogeneity in neuroendophenotypes. Females with ASD who carried a greater number of ASD-associated risk alleles in the OXTR gene showed greater functional connectivity between the nucleus accumbens (NAcc; hub of the reward network) and subcortical brain areas important for motor learning. Relative to males with ASD, females with ASD and higher OXTR risk-allele-dosage showed increased connectivity between the NAcc, subcortical regions, and prefrontal brain areas involved in mentalizing. This increased connectivity between NAcc and prefrontal cortex mirrored the relationship between genetic risk and brain connectivity observed in neurotypical males showing that, under increased OXTR genetic risk load, females with ASD and neurotypical males displayed increased connectivity between reward-related brain regions and prefrontal cortex. These results indicate that females with ASD differentially modulate the effects of increased genetic risk on brain connectivity relative to males with ASD, providing new insights into the neurobiological mechanisms through which the female protective effect may manifest.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , Brain/metabolism , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Reward , Sex Characteristics
18.
Front Neuroinform ; 13: 60, 2019.
Article in English | MEDLINE | ID: mdl-31555116

ABSTRACT

Quantifying, controlling, and monitoring image quality is an essential prerequisite for ensuring the validity and reproducibility of many types of neuroimaging data analyses. Implementation of quality control (QC) procedures is the key to ensuring that neuroimaging data are of high-quality and their validity in the subsequent analyses. We introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based system featuring a workflow for the assessment of various modality and contrast brain imaging data. The design allows users to anonymously upload imaging data to the LONI-QC system. It then computes an exhaustive set of QC metrics which aids users to perform a standardized QC by generating a range of scalar and vector statistics. These procedures are performed in parallel using a large compute cluster. Finally, the system offers an automated QC procedure for structural MRI, which can flag each QC metric as being 'good' or 'bad.' Validation using various sets of data acquired from a single scanner and from multiple sites demonstrated the reproducibility of our QC metrics, and the sensitivity and specificity of the proposed Auto QC to 'bad' quality images in comparison to visual inspection. To the best of our knowledge, LONI-QC is the first online QC system that uniquely supports the variety of functionality where we compute numerous QC metrics and perform visual/automated image QC of multi-contrast and multi-modal brain imaging data. The LONI-QC system has been used to assess the quality of large neuroimaging datasets acquired as part of various multi-site studies such as the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). LONI-QC's functionality is freely available to users worldwide and its adoption by imaging researchers is likely to contribute substantially to upholding high standards of brain image data quality and to implementing these standards across the neuroimaging community.

19.
Front Comput Neurosci ; 12: 93, 2018.
Article in English | MEDLINE | ID: mdl-30534065

ABSTRACT

Despite substantial efforts, it remains difficult to identify reliable neuroanatomic biomarkers of autism spectrum disorder (ASD) based on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Studies which use standard statistical methods to approach this task have been hampered by numerous challenges, many of which are innate to the mathematical formulation and assumptions of general linear models (GLM). Although the potential of alternative approaches such as machine learning (ML) to identify robust neuroanatomic correlates of psychiatric disease has long been acknowledged, few studies have attempted to evaluate the abilities of ML to identify structural brain abnormalities associated with ASD. Here we use a sample of 110 ASD patients and 83 typically developing (TD) volunteers (95 females) to assess the suitability of support vector machines (SVMs, a robust type of ML) as an alternative to standard statistical inference for identifying structural brain features which can reliably distinguish ASD patients from TD subjects of either sex, thereby facilitating the study of the interaction between ASD diagnosis and sex. We find that SVMs can perform these tasks with high accuracy and that the neuroanatomic correlates of ASD identified using SVMs overlap substantially with those found using conventional statistical methods. Our results confirm and establish SVMs as powerful ML tools for the study of ASD-related structural brain abnormalities. Additionally, they provide novel insights into the volumetric, morphometric, and connectomic correlates of this epidemiologically significant disorder.

20.
Neurobiol Aging ; 66: 158-164, 2018 06.
Article in English | MEDLINE | ID: mdl-29579686

ABSTRACT

Although cerebral microbleeds (CMBs) are frequently associated with traumatic brain injury (TBI), their effects on clinical outcome after TBI remain controversial and poorly understood, particularly in older adults. Here we (1) highlight major challenges and opportunities associated with studying the effects of TBI-mediated CMBs; (2) review the evidence on their potential effects on cognitive and neural outcome as a function of age at injury; and (3) suggest priorities for future research on understanding the clinical implications of CMBs. Although TBI-mediated CMBs are likely distinct from those due to cerebral amyloid angiopathy or other neurodegenerative diseases, the effects of these 2 CMB types on brain function may share common features. Furthermore, in older TBI victims, the incidence of TBI-mediated CMBs may approximate that of cerebral amyloid angiopathy-related CMBs, and thus warrants detailed study. Because the alterations effected by CMBs on brain structure and function are both unique and age-dependent, it seems likely that novel, age-tailored therapeutic approaches are necessary for the adequate clinical interpretation and treatment of these ubiquitous and underappreciated TBI sequelae.


Subject(s)
Aging/psychology , Brain Injuries, Traumatic/complications , Brain/blood supply , Brain/physiopathology , Cerebral Hemorrhage/etiology , Cognition , Microvessels , Brain/diagnostic imaging , Brain/pathology , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Humans , Magnetic Resonance Imaging , Microvessels/diagnostic imaging , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL
...