Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
RSC Adv ; 14(17): 12081-12095, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38628478

ABSTRACT

Twelve compounds were isolated from Mussaenda saigonensis aerial parts through phytochemical analysis and the genus Mussaenda is the first place where the compounds 4-6 and 11-12 have been found. Based on the ability to inhibit NO production in RAW264.7 cells, compound 2 has demonstrated the strongest anti-inflammatory activity in vitro with an IC50 of 7.6 µM, as opposed to L-NMMA's IC50 of 41.3 µM. Compound 12 was found to be the most effective inhibitor of alpha-glucosidase enzyme in vitro, with an IC50 value of 42.4 µM (compared to 168 µM for acarbose). Compounds 1-12 were evaluated in vitro for antimicrobial activity using the paper dish method. Compound 11 demonstrated strong antifungal activity against M. gypseum with a MIC value of 50 µM. In silico docking for antimicrobial activity, pose 90 or compound 11 docked well to the 2VF5 enzyme, PDB, which explains why compound 11 had the highest activity in vitro. Entry 2/pose 280 demonstrated excellent anti-inflammatory activity in silico. The stability of the complex between pose 280 and the 4WCU enzyme for anti-inflammatory activity has been assessed using molecular dynamics over a simulation course ranging from 0 to 100 ns. It has been found to be stable from 60 and 100 ns. The Tyr 159 (95%, H-bond via water bridge), Asp 318 (200%, multiple contacts), Met 273 (75%, hydrophobic interaction via water bridge), and Gln 369 (75%, H-bond via water bridge) interacted well within the time range of 0 to 100 ns. It has more hydrophilic or polar pharmacokinetics.

3.
RSC Adv ; 14(13): 9326-9338, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505391

ABSTRACT

Seven flavonoid glycosides were isolated from the aerial portions of Mussaenda recurvata during a phytochemical analysis. This comprised one novel component, ecurvoside, and six well-studied compounds, namely astragalin, isoquercitrin, nicotiflorin, rutin, hesperidin, and neohesperidin. The chemical structures of compounds were identified using spectroscopic techniques and a comparison with previously published studies. Alpha-glucosidase inhibition testing was carried out on all isolated compounds. The compounds evaluated have IC50 values between 35.6 and 239.1 g mL-1, indicating a moderate degree of inhibition. In vitro antimicrobial activities of compounds 1-7 have screened against the bacteria Pseudomonas aeruginosa (P. aeruginosa), methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus faecalis (Strep. faecalis), and fungi: Candida albicans (C. albicans), Trichophyton mentagrophytes (T. mentagrophytes), and Microsporum gypseum (M. gypseum), where compound 6 showed excellent activity against fungi T. mentagrophytes with an MIC value of 12.5 µM. In accordance with the molecular docking study, ecurvoside (1) or pose 472 interacted well with the 3TOP enzyme: PDB and the molecular dynamic simulations proved that the complex of ecurvoside and 3TOP has a stable simulation time of 50-100 ns and the significant residual amino acids in 3TOP are relative to interactions more than one time such as Asp 960, Glu 961, Lys 1088, Glu 1095, Arg 1097, Gly 1102, Thr 1103, Gln 1109, Glu 1178: A chain and Glu 1095, Thr 1101, and Asp 1107: B chain. The docking studies of compounds 1-7 to the enzyme 2VF5 explain the general mechanism to inhibit bacteria and proved that compound 6 (pose 370) inhibited stronger than compound 7 (pose 362) and compound 5 (pose 280), and compounds 1 to 4 do not interact well with 2VF5.

4.
Chem Zvesti ; 76(9): 5655-5675, 2022.
Article in English | MEDLINE | ID: mdl-35669698

ABSTRACT

Distichochlamys citrea M.F. Newman (commonly known as "Black Ginger") is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α-glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC50 = 90.27 µg mL-1) and α-glucosidase inhibitory activity (IC50 = 115.75 µg mL-1). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341 > 12-P53341 > 7-P53341 > 4-P53341 > 11-P53341 > 10-P53341. QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02273-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...