Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 16(11): e1009084, 2020 11.
Article in English | MEDLINE | ID: mdl-33147210

ABSTRACT

The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.


Subject(s)
Cell Division/physiology , Hepatocytes/physiology , Liver Cirrhosis/metabolism , Animals , Apoptosis/physiology , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Fibrosis/physiopathology , Hepatitis/metabolism , Hepatitis/physiopathology , Hepatocytes/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , Mice, Knockout , Signal Transduction
2.
Hepatology ; 49(5): 1625-35, 2009 May.
Article in English | MEDLINE | ID: mdl-19296469

ABSTRACT

UNLABELLED: In chronic liver injury, liver progenitor cells (LPCs) proliferate in the periportal area, migrate inside the lobule, and undergo further differentiation. This process is associated with extracellular matrix (ECM) remodeling. We analyzed LPC expansion and matrix accumulation in a choline-deficient, ethionine-supplemented (CDE) model of LPC proliferation. After day 3, CDE induced collagen deposits in the periportal area. Expansion of LPCs as assessed by increased number of cytokeratin 19 (CK19)-positive cells was first observed at day 7, while ECM accumulated 10 times more than in controls. Thereafter, LPCs and ECM increased in parallel. Furthermore, ECM not only accumulates prior to the increase in number of LPCs, but is also found in front of LPCs along the porto-venous gradient of lobular invasion. Double immunostaining revealed that LPCs are embedded in ECM at all times. Moreover, LPCs infiltrating the liver parenchyma are chaperoned by alpha-smooth muscle actin (alpha-SMA)-positive cells. Gene expression analyses confirmed these observations. The expression of CK19, alpha-fetoprotein, E-cadherin, and CD49f messenger RNA (mRNA), largely overexpressed by LPCs, significantly increased between day 7 and day 10. By contrast, at day 3 there was a rapid burst in the expression of components of the ECM, collagen I and laminin, as well as in alpha-SMA and connective tissue growth factor expression. CONCLUSION: Our data demonstrate that, in a CDE model, ECM deposition and activation of matrix-producing cells occurred as an initial phase, prior to LPC expansion, and in front of LPCs along the porto-venous gradient of lobular invasion. Those observations may reveal a fundamental role for the established hepatic microenvironment or niche during the process of activation and differentiation of liver progenitor cells.


Subject(s)
Extracellular Matrix/metabolism , Hepatic Stellate Cells/physiology , Liver Regeneration , Liver/cytology , Animals , Cell Differentiation , Cell Proliferation , Choline Deficiency/complications , Disease Models, Animal , Ethionine/toxicity , Gene Expression Profiling , Liver/metabolism , Liver Diseases/etiology , Male , Mice , Mice, Inbred C57BL , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...