Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(11): e22001, 2021 11.
Article in English | MEDLINE | ID: mdl-34674320

ABSTRACT

The pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial-to-mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non-transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple-negative breast cancer cells (MDA-MB-231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA-MB-231 and MCF10A cells and without changes in E-cadherin. Induction of EMT in MCF10A cells, by treatment with WNT-5a and TGF-ß1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT-5a/TGF-ß1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Protein Serine-Threonine Kinases/physiology , Ribonucleoprotein, U4-U6 Small Nuclear/physiology , Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Movement , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
2.
Biochem Cell Biol ; 98(3): 314-326, 2020 06.
Article in English | MEDLINE | ID: mdl-31671275

ABSTRACT

Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear subdomains that respond to genotoxic stress by increasing in number via changes in chromatin structure. However, the role of the PML protein and PML NBs in specific mechanisms of DNA repair has not been fully characterized. Here, we have directly examined the role of PML in homologous recombination (HR) using I-SceI extrachromosomal and chromosome-based homology-directed repair (HDR) assays, and in HDR by CRISPR/Cas9-mediated gene editing. We determined that PML loss can inhibit HR in an extrachromosomal HDR assay but had less of an effect on CRISPR/Cas9-mediated chromosomal HDR. Overexpression of PML also inhibited both CRISPR HDR and I-SceI-induced HDR using a chromosomal reporter, and in an isoform-specific manner. However, the impact of PML overexpression on the chromosomal HDR reporter was dependent on the intranuclear chromosomal positioning of the reporter. Specifically, HDR at the TAP1 gene locus, which is associated with PML NBs, was reduced compared with a locus not associated with a PML NB; yet, HDR could be reduced at the non-PML NB-associated locus by PML overexpression. Thus, both loss and overexpression of PML isoforms can inhibit HDR, and proximity of a chromosomal break to a PML NB can impact HDR efficiency.


Subject(s)
Cell Nucleus/metabolism , Homologous Recombination , Promyelocytic Leukemia Protein/chemistry , Recombinational DNA Repair , CRISPR-Cas Systems , Cell Line, Tumor , DNA Breaks, Double-Stranded , Humans , In Situ Hybridization, Fluorescence , Microscopy, Fluorescence , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...