Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(4): e14410, 2024.
Article in English | MEDLINE | ID: mdl-38945685

ABSTRACT

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Subject(s)
Circadian Rhythm , Light , Solanum lycopersicum , Solanum lycopersicum/radiation effects , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Photosynthesis/radiation effects , Photosynthesis/physiology , Photoperiod , Xanthophylls/metabolism , Sunlight , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Kinetics , Plant Leaves/radiation effects , Plant Leaves/physiology , Plant Leaves/metabolism
2.
Ann Bot ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946023

ABSTRACT

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

3.
Front Plant Sci ; 14: 1281456, 2023.
Article in English | MEDLINE | ID: mdl-38023857

ABSTRACT

The cut flower industry has a global reach as flowers are often produced in countries around the equator and transported by plane or ship (reefer) mostly to the global north. Vase-life issues are often regarded as linked to only postharvest conditions while cultivation factors are just as important. Here, we review the main causes for quality reduction in cut flowers with the emphasis on the importance of preharvest conditions. Cut flower quality is characterised by a wide range of features, such as flower number, size, shape, colour (patterns), fragrance, uniformity of blooming, leaf and stem colour, plant shape and developmental stage, and absence of pests and diseases. Postharvest performance involves improving and preserving most of these characteristics for as long as possible. The main causes for cut flower quality loss are reduced water balance or carbohydrate availability, senescence and pest and diseases. Although there is a clear role for genotype, cultivation conditions are just as important to improve vase life. The role of growth conditions has been shown to be essential; irrigation, air humidity, and light quantity and quality can be used to increase quality. For example, xylem architecture is affected by the irrigation scheme, and the relative humidity in the greenhouse affects stomatal function. Both features determine the water balance of the flowering stem. Light quality and period drives photosynthesis, which is directly responsible for accumulation of carbohydrates. The carbohydrate status is important for respiration, and many senescence related processes. High carbohydrates can lead to sugar loss into the vase water, leading to bacterial growth and potential xylem blockage. Finally, inferior hygiene during cultivation and temperature and humidity control during postharvest can lead to pathogen contamination. At the end of the review, we will discuss the future outlook focussing on new phenotyping tools necessary to quantify the complex interactions between cultivation factors and postharvest performance of cut flowers.

4.
PLoS One ; 16(5): e0251405, 2021.
Article in English | MEDLINE | ID: mdl-33974639

ABSTRACT

Phalaenopsis is an economically important horticultural ornamental, but its growth is slow and costly. The vegetative cultivation phase is long and required to ensure sufficient plant size. This is needed to develop high quality flowering plants. We studied the effects of temperature (27 or 31 °C) and light intensity (60 or 140 µmol m-2 s-1) on plant growth and development during the vegetative cultivation phase in two experiments, with respectively 19 and 14 genotypes. Furthermore, the after-effects of treatments applied during vegetative growth on flowering traits were determined. Increasing light intensity in the vegetative phase accelerated both vegetative plant growth and development. Increasing temperature accelerated vegetative leaf appearance rate, but strongly reduced plant and root biomass accumulation when temperatures were too high. Flowering was greatly affected by treatments applied during vegetative growth, and increased light and temperature increased number of flower spikes, and number of flowers and buds. Genotypic variation was large in Phalaenopsis, especially in traits related to flowering, thus care is needed when generalising results based on a limited number of cultivars. Plant biomass and number of leaves during vegetative growth were positively correlated with flowering quality. These traits can be used as an early predictor for flowering capacity and quality of the final product. Additionally, this knowledge can be used to improve selection of new cultivars.


Subject(s)
Flowers/growth & development , Orchidaceae/growth & development , Biomass , Genetic Variation , Genotype , Light , Orchidaceae/genetics , Orchidaceae/radiation effects , Plant Leaves/growth & development , Plant Roots/growth & development , Temperature
5.
Mol Plant Pathol ; 22(3): 361-372, 2021 03.
Article in English | MEDLINE | ID: mdl-33497519

ABSTRACT

Studies on plant-pathogen interactions often involve monitoring disease symptoms or responses of the host plant to pathogen-derived immunogenic patterns, either visually or by staining the plant tissue. Both these methods have limitations with respect to resolution, reproducibility, and the ability to quantify the results. In this study we show that red light detection by the red fluorescent protein (RFP) channel of a multipurpose fluorescence imaging system that is probably available in many laboratories can be used to visualize plant tissue undergoing cell death. Red light emission is the result of chlorophyll fluorescence on thylakoid membrane disassembly during the development of a programmed cell death process. The activation of programmed cell death can occur during either a hypersensitive response to a biotrophic pathogen or an apoptotic cell death triggered by a necrotrophic pathogen. Quantifying the intensity of the red light signal enables the magnitude of programmed cell death to be evaluated and provides a readout of the plant immune response in a faster, safer, and nondestructive manner when compared to previously developed chemical staining methodologies. This application can be implemented to screen for differences in symptom severity in plant-pathogen interactions, and to visualize and quantify in a more sensitive and objective manner the intensity of the plant response on perception of a given immunological pattern. We illustrate the utility and versatility of the method using diverse immunogenic patterns and pathogens.


Subject(s)
Apoptosis , Arabidopsis/physiology , Host-Pathogen Interactions , Lilium/physiology , Nicotiana/physiology , Arabidopsis/cytology , Arabidopsis/immunology , Arabidopsis/microbiology , Light , Lilium/genetics , Lilium/immunology , Lilium/microbiology , Optical Imaging , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/radiation effects , Reproducibility of Results , Nicotiana/immunology , Nicotiana/microbiology , Nicotiana/radiation effects
6.
Physiol Plant ; 172(1): 134-145, 2021 May.
Article in English | MEDLINE | ID: mdl-33305855

ABSTRACT

Crassulacean acid metabolism (CAM) is a photosynthetic pathway that temporally separates the nocturnal CO2 uptake, via phosphoenolpyruvate carboxylase (PEPC, C4 carboxylation), from the diurnal refixation by Rubisco (C3 carboxylation). At the end of the day (CAM-Phase IV), when nocturnally stored CO2 has depleted, stomata reopen and allow additional CO2 uptake, which can be fixed by Rubisco or by PEPC. This work examined the CO2 uptake via C3 and C4 carboxylation in phase IV in the CAM species Phalaenopsis "Sacramento" and Kalanchoe blossfeldiana "Saja." Short blackout periods during phase IV caused a sharp drop in CO2 uptake in K. blossfeldiana but not in Phalaenopsis, indicating strong Rubisco activity only in K. blossfeldiana. Chlorophyll fluorescence revealed a progressive decrease in ΦPSII in Phalaenopsis, implying decreasing Rubisco activity, while ΦPSII remained constant in phase IV in K. blossfeldiana. However, short switching to 2% O2 indicated the presence of photorespiration and thus Rubisco activity in both species throughout phase IV. Lastly, in Phalaenopsis, accumulation of starch in phase IV occurred. These results indicate that in Phalaenopsis, PEPC was the main carboxylase in phase IV, although Rubisco remained active throughout the whole phase. This will lead to double carboxylation (futile cycling) but may help to avoid photoinhibition.


Subject(s)
Carbon Dioxide , Crassulacean Acid Metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis , Ribulose-Bisphosphate Carboxylase/metabolism
7.
Front Plant Sci ; 11: 599982, 2020.
Article in English | MEDLINE | ID: mdl-33424896

ABSTRACT

In vertical farming, plants are grown in multi-layered growth chambers supplied with energy-efficient LEDs that produce less heat and can thus be placed in close proximity to the plants. The spectral quality control allowed by LED lighting potentially enables steering plant development toward desired phenotypes. However, this requires detailed knowledge on how light quality affects different developmental processes per plant species or even cultivar, and how well information from model plants translates to horticultural crops. Here we have grown the model dicot Arabidopsis thaliana (Arabidopsis) and the crop plant Solanum lycopersicum (tomato) under white or monochromatic red or blue LED conditions. In addition, seedlings were grown in vitro in either light-grown roots (LGR) or dark-grown roots (DGR) LED conditions. Our results present an overview of phenotypic traits that are sensitive to red or blue light, which may be used as a basis for application by tomato nurseries. Our comparative analysis showed that young tomato plants were remarkably indifferent to the LED conditions, with red and blue light effects on primary growth, but not on organ formation or flowering. In contrast, Arabidopsis appeared to be highly sensitive to light quality, as dramatic differences in shoot and root elongation, organ formation, and developmental phase transitions were observed between red, blue, and white LED conditions. Our results highlight once more that growth responses to environmental conditions can differ significantly between model and crop species. Understanding the molecular basis for this difference will be important for designing lighting systems tailored for specific crops.

8.
Front Plant Sci ; 11: 610041, 2020.
Article in English | MEDLINE | ID: mdl-33569068

ABSTRACT

Shorter photoperiod and lower daily light integral (DLI) limit the winter greenhouse production. Extending the photoperiod by supplemental light increases biomass production but inhibits flowering in short-day plants such as Chrysanthemum morifolium. Previously, we reported that flowering in growth-chamber grown chrysanthemum with red (R) and blue (B) LED-light could also be induced in long photoperiods by applying only blue light during the last 4h of 15h long-days. This study investigates the possibility to induce flowering by extending short-days in greenhouses with 4h of blue light. Furthermore, flower induction after 4h of red light extension was tested after short-days RB-LED light in a growth-chamber and after natural solar light in a greenhouse. Plants were grown at 11h of sole source RB light (60:40) in a growth-chamber or solar light in the greenhouse (short-days). Additionally, plants were grown under long-days, which either consisted of short-days as described above extended with 4h of B or R light to long-days or of 15h continuous RB light or natural solar light. Flower initiation and normal capitulum development occurred in the blue-extended long-days in the growth-chamber after 11h of sole source RB, similarly as in short-days. However, when the blue extension was applied after 11h of full-spectrum solar light in a greenhouse, no flower initiation occurred. With red-extended long-days after 11h RB (growth-chamber) flower initiation occurred, but capitulum development was hindered. No flower initiation occurred in red-extended long-days in the greenhouse. These results indicate that multiple components of the daylight spectrum influence different phases in photoperiodic flowering in chrysanthemum in a time-dependent manner. This research shows that smart use of LED-light can open avenues for a more efficient year-round cultivation of chrysanthemum by circumventing the short-day requirement for flowering when applied in emerging vertical farm or plant factories that operate without natural solar light. In current year-round greenhouses' production, however, extension of the natural solar light during the first 11 h of the photoperiod with either red or blue sole LED light, did inhibit flowering.

9.
Biochem J ; 476(21): 3295-3312, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31694051

ABSTRACT

A consequence of the series configuration of PSI and PSII is that imbalanced excitation of the photosystems leads to a reduction in linear electron transport and a drop in photosynthetic efficiency. Achieving balanced excitation is complicated by the distinct nature of the photosystems, which differ in composition, absorption spectra, and intrinsic efficiency, and by a spectrally variable natural environment. The existence of long- and short-term mechanisms that tune the photosynthetic apparatus and redistribute excitation energy between the photosystems highlights the importance of maintaining balanced excitation. In the short term, state transitions help restore balance through adjustments which, though not fully characterised, are observable using fluorescence techniques. Upon initiation of a state transition in algae and cyanobacteria, increases in photosynthetic efficiency are observable. However, while higher plants show fluorescence signatures associated with state transitions, no correlation between a state transition and photosynthetic efficiency has been demonstrated. In the present study, state 1 and state 2 were alternately induced in tomato leaves by illuminating leaves produced under artificial sun and shade spectra with a sequence of irradiances extreme in terms of PSI or PSII overexcitation. Light-use efficiency increased in both leaf types during transition from one state to the other with remarkably similar kinetics to that of F'm/Fm, F'o/Fo, and, during the PSII-overexciting irradiance, ΦPSII and qP. We have provided compelling evidence for the first time of a correlation between photosynthetic efficiency and state transitions in a higher plant. The importance of this relationship in natural ecophysiological contexts remains to be elucidated.


Subject(s)
Photosynthesis , Plants/metabolism , Kinetics , Light , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/metabolism , Plants/chemistry , Plants/radiation effects
10.
Front Plant Sci ; 10: 322, 2019.
Article in English | MEDLINE | ID: mdl-30984211

ABSTRACT

Shading by sunlit leaves causes a low red (R) to far-red (FR) ratio that results in a low phytochrome stationary state (PSS). A low PSS induces an array of shade avoidance responses that influence plant architecture and development. It has often been suggested that this architectural response is advantageous for plant growth due to its positive effect on light interception. In contrast to sunlight, artificial light sources such as LEDs often lack FR, resulting in a PSS value higher than solar light (∼0.70). The aim of this study was to investigate how PSS values higher than solar radiation influence the growth and development of tomato plants. Additionally, we investigated whether a short period of FR at the end of the day (EOD-FR) could counteract any potentially negative effects caused by a lack of FR during the day. Tomato plants were grown at four PSS levels (0.70, 0.73, 0.80, and 0.88), or with a 15-min end-of-day far-red (EOD-FR) application (PSS 0.10). Photosynthetic Active Radiation (PAR; 150 µmol m-2 s-1) was supplied using red and blue (95/5%) LEDs. In an additional experiment, the same treatments were applied to plants receiving supplementary low-intensity solar light. Increasing PSS above solar PSS resulted in increased plant height. Leaf area and plant dry mass were lower in the treatments completely lacking FR than treatments with FR. EOD-FR-treated plants responded almost similarly to plants grown without FR, except for plant height, which was increased. Simulations with a 3D-model for light absorption revealed that the increase in dry mass was mainly related to an increase in light absorption due to a higher total leaf area. Increased petiole angle and internode length had a negative influence on total light absorption. Additionally, the treatments without FR and the EOD-FR showed strongly reduced fruit production due to reduced fruit growth associated with reduced source strength and delayed flowering. We conclude that growing tomato plants under artificial light without FR during the light period causes a range of inverse shade avoidance responses, which result in reduced plant source strength and reduced fruit production, which cannot be compensated by a simple EOD-FR treatment.

11.
Front Plant Sci ; 10: 19, 2019.
Article in English | MEDLINE | ID: mdl-30761166

ABSTRACT

Plants perceive and transduce information about light quantity, quality, direction and photoperiod via several photoreceptors and use it to adjust their growth and development. A role for photoreceptors has been hypothesized in the injuries that tomato plants develop when exposed to continuous light as the light spectral distribution influences the injury severity. Up to now, however, only indirect clues suggested that phytochromes (PHY), red/far-red photoreceptors, are involved in the continuous-light-induced injuries in tomato. In this study, therefore, we exposed mutant and transgenic tomato plants lacking or over-expressing phytochromes to continuous light, with and without far-red light enrichment. The results show that PHYA over-expression confers complete tolerance to continuous light regardless the light spectrum. Under continuous light with low far-red content, PHYB1 and PHYB2 diminished and enhanced the injury, respectively, yet the effects were small. These results confirm that phytochrome signaling networks are involved in the induction of injury under continuous light. HIGHLIGHTS: - PHYA over-expression confers tolerance to continuous light regardless the light spectrum.- In the absence of far-red light, PHYB1 slightly diminishes the continuous light-induced injury.- Continuous light down-regulates photosynthesis genes in sensitive tomato lines.

12.
Plant Cell Physiol ; 58(8): 1339-1349, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28961989

ABSTRACT

Light is most important to plants as it fuels photosynthesis and provides clues about the environment. If provided in unnatural long photoperiods, however, it can be harmful and even lethal. Tomato (Solanum lycopersicum), for example, develops mottled chlorosis and necrosis when exposed to continuous light. Understanding the mechanism of these injuries is valuable, as important pathways regulating photosynthesis, such as circadian, retrograde and light signaling pathways are probably involved. Here, we use non-targeted metabolomics and transcriptomics analysis as well as hypothesis-driven experiments with continuous light-tolerant and -sensitive tomato lines to explore the long-standing proposed role of carbohydrate accumulation in this disorder. Analysis of metabolomics and transcriptomics data reveals a clear effect of continuous light on sugar metabolism and photosynthesis. A strong negative correlation between sucrose and starch content with the severity of continuous light-induced damage quantified as the maximum quantum efficiency of PSII (Fv/Fm) was found across several abnormal light/dark cycles, supporting the hypothesis that carbohydrates play an important role in the continuous light-induced injury. We postulate that the continuous light-induced injury in tomato is caused by down-regulation of photosynthesis, showing characteristics of both cytokinin-regulated senescence and light-modulated retrograde signaling. Molecular mechanisms linking carbohydrate accumulation with down-regulation of carbon-fixing enzymes are discussed.


Subject(s)
Photosystem II Protein Complex/metabolism , Solanum lycopersicum/physiology , Starch/metabolism , Sucrose/metabolism , Carbohydrate Metabolism , Carbon Cycle/physiology , Cytokinins/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Genotype , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Funct Plant Biol ; 44(6): 597-611, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32480591

ABSTRACT

Unlike other species, when tomato plants (Solanum lycopersicum L.) are deprived of at least 8h of darkness per day, they develop a potentially lethal injury. In an effort to understand why continuous light (CL) is injurious to tomato, we tested five factors, which potentially could be responsible for triggering the injury in CL-grown tomato: (i) differences in the light spectral distribution between sunlight and artificial light, (ii) continuous light signalling, (iii) continuous supply of light for photosynthesis, (iv) continuous photo-oxidative pressure and (v) circadian asynchrony - a mismatch between the internal circadian clock frequency and the external light/dark cycles. Our results strongly suggest that continuous-light-induced injury does not result from the unnatural spectral distribution of artificial light nor from the continuity of light per se. Instead, circadian asynchrony seems to be the main factor inducing the CL-induced injury, but the mechanism is not by the earlier hypothesised circadian pattern in sensitivity for photoinhibition. Here, however, we show for the first time diurnal fluctuations in sensitivity to photoinhibition during normal photoperiods. Similarly, we also report for the first time diurnal and circadian rhythms in the maximum quantum efficiency of PSII (Fv/Fm) and the parameter F0.

14.
Plant Cell Environ ; 40(1): 69-79, 2017 01.
Article in English | MEDLINE | ID: mdl-27640366

ABSTRACT

Many studies investigated temperature effects on leaf initiation and expansion by relating these processes to air temperature or the temperature of a specific organ (e.g. leaf temperature). In reality plant temperature is hardly ever equal to air temperature or spatially uniform. Apical bud temperature (Tbud ), for example, may greatly differ from the temperature of the rest of the plant (Tplant ) dependent on the environment. Recent research in Cucumis sativus showed that Tbud influences leaf initiation independent of Tplant . These findings trigger the question if such spatial temperature differences also influence leaf expansion and plant phenotype. In a 28 day study, we maintained temperature differences between Tbud and Tplant ranging from -7 to +8 °C using a custom-made bud temperature control system. Leaf expansion did not only depend on leaf temperature but also on the difference between bud and leaf temperature. Differences between Tbud and Tplant considerably influenced vertical leaf area distribution over the shoot: increasing Tbud beyond Tplant resulted in more and smaller leaves, while decreasing Tbud below Tplant resulted in less and larger leaves. The trade-off between leaf number and leaf area resulted in phenotypic alterations that cannot be predicted, for example, by crop models, when assuming plant temperature uniformity.


Subject(s)
Cucumis sativus/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Temperature , Biomass , Cucumis sativus/growth & development , Phenotype , Plant Development
15.
Planta ; 243(4): 1071-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769623

ABSTRACT

MAIN CONCLUSION: Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.


Subject(s)
Biology/methods , Cucumis sativus/growth & development , Plant Leaves/growth & development , Biology/instrumentation , Equipment Design , Meristem/growth & development , Temperature
16.
Planta ; 241(1): 285-90, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25399350

ABSTRACT

Continuous light induces a potentially lethal injury in domesticated tomato (Solanum lycopersicum) plants. Recently, continuous-light tolerance was reported in several wild tomato species, yet the molecular mechanisms underpinning tolerance/sensitivity are still elusive. Here, we investigated from which part of the plant continuous-light tolerance originates and whether this trait acts systemically within the plant. By exposing grafted plants bearing both tolerant and sensitive shoots, the trait was functionally located in the shoot rather than the roots. Additionally, an increase in continuous-light tolerance was observed in sensitive plants when a continuous-light-tolerant shoot was grafted on it. Cultivation of greenhouse tomatoes under continuous light promises high yield increases. Our results show that to pursuit this, the trait should be bred into scion rather than rootstock lines. In addition, identifying the nature of the signal/molecule(s) and/or the mechanism of graft-induced, continuous-light tolerance can potentially result in a better understanding of important physiological processes like long-distance signaling.


Subject(s)
Adaptation, Physiological/radiation effects , Crop Production/methods , Light , Solanum lycopersicum/radiation effects , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Inheritance Patterns/genetics , Inheritance Patterns/physiology , Inheritance Patterns/radiation effects , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/radiation effects , Plant Shoots/genetics , Plant Shoots/physiology , Plant Shoots/radiation effects , Signal Transduction/genetics , Signal Transduction/physiology , Signal Transduction/radiation effects
17.
Nat Commun ; 5: 4549, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25093373

ABSTRACT

An important constraint for plant biomass production is the natural day length. Artificial light allows for longer photoperiods, but tomato plants develop a detrimental leaf injury when grown under continuous light--a still poorly understood phenomenon discovered in the 1920s. Here, we report a dominant locus on chromosome 7 of wild tomato species that confers continuous light tolerance. Genetic evidence, RNAseq data, silencing experiments and sequence analysis all point to the type III light harvesting chlorophyll a/b binding protein 13 (CAB-13) gene as a major factor responsible for the tolerance. In Arabidopsis thaliana, this protein is thought to have a regulatory role balancing light harvesting by photosystems I and II. Introgressing the tolerance into modern tomato hybrid lines, results in up to 20% yield increase, showing that limitations for crop productivity, caused by the adaptation of plants to the terrestrial 24-h day/night cycle, can be overcome.


Subject(s)
Gene Expression Regulation, Plant , Light , Solanum lycopersicum/genetics , Solanum lycopersicum/radiation effects , Arabidopsis/genetics , Base Sequence , Carbohydrates/chemistry , Chlorophyll/genetics , Chlorophyll/metabolism , Chromosomes/ultrastructure , Crosses, Genetic , Gene Deletion , Gene Silencing , Genotype , Homozygote , Molecular Sequence Data , Phenotype , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/metabolism , Plants/genetics , Sequence Analysis, RNA
18.
Funct Plant Biol ; 41(5): 547-556, 2014 Apr.
Article in English | MEDLINE | ID: mdl-32481012

ABSTRACT

Radiation substantially affects leaf initiation rate (LIR), a key variable for plant growth, by influencing the heat budget and therefore the temperature of the shoot apical meristem. The photosynthetically active component of solar radiation (photosynthetic photon flux density; PPFD) is critical for plant growth and when at shade to moderate levels may also influence LIR via limited photosynthate availability. Cucumber and tomato plants were subjected to different PPFDs (2.5-13.2molm-2 day-1) and then LIR, carbohydrate content and diel net CO2 uptake of the apical bud were quantified. LIR showed saturating response to increasing PPFD in both species. In this PPFD range, LIR was reduced by 20% in cucumber and by 40% in tomato plants. Carbohydrate content and dark respiration were substantially reduced at low PPFD. LIR may be considered as an adaptive trait of plants to low light levels, which is likely to be determined by the local photosynthate availability. In tomato and cucumber plants, LIR can be markedly reduced at low PPFD in plant production systems at high latitudes, suggesting that models solely based on thermal time may not precisely predict LIR at low PPFD.

19.
Plant Cell Environ ; 36(11): 1950-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23509944

ABSTRACT

Meristem temperature (Tmeristem ) drives plant development but is hardly ever quantified. Instead, air temperature (Tair ) is usually used as its approximation. Meristems are enclosed within apical buds. Bud structure and function may differ across species. Therefore, Tmeristem may deviate from Tair in a species-specific way. Environmental variables (air temperature, vapour pressure deficit, radiation, and wind speed) were systematically varied to quantify the response of Tmeristem . This response was related to observations of bud structure and transpiration. Tomato and cucumber plants were used as model plants as they are morphologically distinct and usually growing in similar environments. Tmeristem substantially deviated from Tair in a species-specific manner under moderate environments. This deviation ranged between -2.6 and 3.8 °C in tomato and between -4.1 and 3.0 °C in cucumber. The lower Tmeristem observed in cucumber was linked with the higher transpiration of the bud foliage sheltering the meristem when compared with tomato plants. We here indicate that for properly linking growth and development of plants to temperature in future applications, for instance in climate change scenarios studies, Tmeristem should be used instead of Tair , as a species-specific trait highly reliant on various environmental factors.


Subject(s)
Air , Cucumis sativus/physiology , Meristem/physiology , Solanum lycopersicum/physiology , Temperature , Climate , Flowers/physiology , Plant Transpiration/physiology , Species Specificity , Vapor Pressure
20.
Plant Cell ; 24(5): 1921-35, 2012 May.
Article in English | MEDLINE | ID: mdl-22623496

ABSTRACT

The mechanisms underlying the wavelength dependence of the quantum yield for CO(2) fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO(2) fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.


Subject(s)
Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Carotenoids/metabolism , Cucumis sativus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...