Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 83(10): 2578-2585, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30178873

ABSTRACT

Vegetables have low taste intensities, which might contribute to low acceptance. The aim of this study was to investigate the effect of taste (sweetness, sourness, bitterness, umami, and saltiness) and fattiness enhancement on consumer acceptance of cucumber and green capsicum purees. Three concentrations of sugar, citric acid, caffeine, mono-sodium glutamate, NaCl, and sunflower oil were added to pureed cucumber and green capsicum. Subjects (n = 66, 35.6 ± 17.7 y) rated taste and fattiness intensity. Different subjects (n = 100, 33.2 ± 16.5 years) evaluated acceptance of all pureed vegetables. Taste intensities of vegetable purees were significantly different (P < 0.05) between the three tastant concentrations except for umami in both vegetable purees, sourness in green capsicum puree, and fattiness in cucumber puree. Only enhancement of sweetness significantly (P < 0.05) increased acceptance of both vegetable purees compared to unmodified purees. In cucumber purees, relatively small amounts of added sucrose (2%) increased acceptance already significantly, whereas in green capsicum acceptance increased significantly only with addition of 5% sucrose. Enhancement of other taste modalities did not significantly increase acceptance of both vegetable purees. Enhancing saltiness and bitterness significantly decreased acceptance of both vegetable purees. We conclude that the effect of taste enhancement on acceptance of vegetable purees differs between tastants and depends on tastant concentration and vegetable type. With the exception of sweetness, taste enhancement of taste modalities such as sourness, bitterness, umami, and saltiness was insufficient to increase acceptance of vegetable purees. We suggest that more complex taste, flavor, or texture modifications are required to enhance acceptance of vegetables. PRACTICAL APPLICATION: Results can be used by cultivators to select and grow vegetable varieties with enhanced taste and flavor. Especially for cucumber, relatively small sweetness enhancement is sufficient to increase acceptance.


Subject(s)
Capsicum/chemistry , Consumer Behavior , Cucumis sativus/chemistry , Taste/drug effects , Adolescent , Adult , Caffeine/chemistry , Capsaicin/chemistry , Citric Acid/chemistry , Color , Female , Humans , Male , Middle Aged , Sodium Chloride/chemistry , Sodium Glutamate/chemistry , Sucrose/chemistry , Vegetables/chemistry , Young Adult
2.
BMC Plant Biol ; 10: 162, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20691058

ABSTRACT

BACKGROUND: The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. RESULTS: Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. CONCLUSIONS: To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.


Subject(s)
Asteraceae/cytology , Asteraceae/drug effects , Cell Differentiation/drug effects , Xylem/cytology , Xylem/drug effects , Cell Culture Techniques , DNA Fragmentation/drug effects , Enzyme Inhibitors
3.
Cell Biol Int ; 33(4): 524-33, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19232395

ABSTRACT

The Zinnia elegans mesophyll cell culture is a useful system for xylogenesis studies. The system is associated with highly synchronous tracheary element (TE) differentiation, making it more suitable for molecular studies requiring larger amounts of molecular isolates, such as mRNA and proteins and for studying cellulose synthesis. There is, however, the problem of non-uniformity and significant variations in the yields of TEs (%TE). One possible cause for this variability in the %TE could be the lack of a standardized experimental protocol in various research laboratories for establishing the Zinnia culture. Mesophyll cells isolated from the first true leaves of Z. elegans var Envy seedlings of approximately 14 days old were cultured in vitro and differentiated into TEs. The xylogenic culture medium was supplied with 1mg/l each of benzylaminopurine (BA) and alpha-naphthalene acetic acid (NAA). Application of this improved culture method resulted in stable and reproducible amounts of TE as high as 76% in the Zinnia culture. The increase was mainly due to conditioning of the mesophyll cell culture and adjustments of the phytohormonal balance in the cultures. Also, certain biochemical and cytological methods have been shown to reliably monitor progress of TE differentiation. We conclude that, with the adoption of current improvement in the xylogenic Z. elegans culture, higher amounts of tracheary elements can be produced. This successful outcome raises the potential of the Zinnia system as a suitable model for cellulose and xylogenesis research.


Subject(s)
Asteraceae/cytology , Cell Culture Techniques , Cell Differentiation , Plant Leaves/cytology , Xylem/cytology , Xylem/growth & development , Asteraceae/drug effects , Asteraceae/physiology , Benzyl Compounds/pharmacology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Culture Media/pharmacology , Naphthalenes/pharmacology , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Proteins/metabolism , Purines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...