Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Robot AI ; 11: 1326670, 2024.
Article in English | MEDLINE | ID: mdl-38440775

ABSTRACT

Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview. Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years. Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted. Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking. Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.

2.
Sci Rep ; 12(1): 21412, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496546

ABSTRACT

Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring.


Subject(s)
Epilepsy , Wearable Electronic Devices , Humans , Data Accuracy , Reproducibility of Results , Seizures , Epilepsy/diagnosis
3.
Sensors (Basel) ; 22(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591007

ABSTRACT

Focal onset epileptic seizures are highly heterogeneous in their clinical manifestations, and a robust seizure detection across patient cohorts has to date not been achieved. Here, we assess and discuss the potential of supervised machine learning models for the detection of focal onset motor seizures by means of a wrist-worn wearable device, both in a personalized context as well as across patients. Wearable data were recorded in-hospital from patients with epilepsy at two epilepsy centers. Accelerometry, electrodermal activity, and blood volume pulse data were processed and features for each of the biosignal modalities were calculated. Following a leave-one-out approach, a gradient tree boosting machine learning model was optimized and tested in an intra-subject and inter-subject evaluation. In total, 20 seizures from 9 patients were included and we report sensitivities of 67% to 100% and false alarm rates of down to 0.85 per 24 h in the individualized assessment. Conversely, for an inter-subject seizure detection methodology tested on an out-of-sample data set, an optimized model could only achieve a sensitivity of 75% at a false alarm rate of 13.4 per 24 h. We demonstrate that robustly detecting focal onset motor seizures with tonic or clonic movements from wearable data may be possible for individuals, depending on specific seizure manifestations.


Subject(s)
Epilepsies, Partial , Epilepsy , Wearable Electronic Devices , Accelerometry , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Seizures/diagnosis
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1157-1163, 2021 11.
Article in English | MEDLINE | ID: mdl-34891493

ABSTRACT

The optical measurement principle photoplethysmography has emerged in today's wearable devices as the standard to monitor the wearer's heart rate in everyday life. This cost-effective and easy-to-integrate technique has transformed from the original transmission mode pulse oximetry for clinical settings to the reflective mode of modern ambulatory, wrist-worn devices. Numerous proposed algorithms aim at the efficient heart rate measurement and accurate detection of the consecutive pulses for the derivation of secondary features from the heart rate variability. Most, however, have been evaluated either on own, closed recordings or on public datasets that often stem from clinical pulse oximeters in transmission instead of wearables' reflective mode. Signals tend furthermore to be preprocessed with filters, which are rarely documented and unintentionally fitted to the available and applied signals. We investigate the influence of preprocessing on the peak positions and present the benchmark of two cutting-edge pulse detection algorithms on actual raw measurements from reflective mode photoplethysmography. Based on 21806 pulse labels, our evaluation shows that the most suitable but still universal filter passband is located at 0.5 to 15.0Hz since it preserves the required harmonics to shape the peak positions.


Subject(s)
Photoplethysmography , Wearable Electronic Devices , Algorithms , Heart Rate , Signal Processing, Computer-Assisted
5.
JMIR Mhealth Uhealth ; 9(11): e27674, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34806993

ABSTRACT

BACKGROUND: Video electroencephalography recordings, routinely used in epilepsy monitoring units, are the gold standard for monitoring epileptic seizures. However, monitoring is also needed in the day-to-day lives of people with epilepsy, where video electroencephalography is not feasible. Wearables could fill this gap by providing patients with an accurate log of their seizures. OBJECTIVE: Although there are already systems available that provide promising results for the detection of tonic-clonic seizures (TCSs), research in this area is often limited to detection from 1 biosignal modality or only during the night when the patient is in bed. The aim of this study is to provide evidence that supervised machine learning can detect TCSs from multimodal data in a new data set during daytime and nighttime. METHODS: An extensive data set of biosignals from a multimodal watch worn by people with epilepsy was recorded during their stay in the epilepsy monitoring unit at 2 European clinical sites. From a larger data set of 243 enrolled participants, those who had data recorded during TCSs were selected, amounting to 10 participants with 21 TCSs. Accelerometry and electrodermal activity recorded by the wearable device were used for analysis, and seizure manifestation was annotated in detail by clinical experts. Ten accelerometry and 3 electrodermal activity features were calculated for sliding windows of variable size across the data. A gradient tree boosting algorithm was used for seizure detection, and the optimal parameter combination was determined in a leave-one-participant-out cross-validation on a training set of 10 seizures from 8 participants. The model was then evaluated on an out-of-sample test set of 11 seizures from the remaining 2 participants. To assess specificity, we additionally analyzed data from up to 29 participants without TCSs during the model evaluation. RESULTS: In the leave-one-participant-out cross-validation, the model optimized for sensitivity could detect all 10 seizures with a false alarm rate of 0.46 per day in 17.3 days of data. In a test set of 11 out-of-sample TCSs, amounting to 8.3 days of data, the model could detect 10 seizures and produced no false positives. Increasing the test set to include data from 28 more participants without additional TCSs resulted in a false alarm rate of 0.19 per day in 78 days of wearable data. CONCLUSIONS: We show that a gradient tree boosting machine can robustly detect TCSs from multimodal wearable data in an original data set and that even with very limited training data, supervised machine learning can achieve a high sensitivity and low false-positive rate. This methodology may offer a promising way to approach wearable-based nonconvulsive seizure detection.


Subject(s)
Seizures , Wearable Electronic Devices , Accelerometry , Algorithms , Electroencephalography , Humans , Seizures/diagnosis
6.
Epilepsia ; 62(10): 2307-2321, 2021 10.
Article in English | MEDLINE | ID: mdl-34420211

ABSTRACT

The Wearables for Epilepsy And Research (WEAR) International Study Group identified a set of methodology standards to guide research on wearable devices for seizure detection. We formed an international consortium of experts from clinical research, engineering, computer science, and data analytics at the beginning of 2020. The study protocols and practical experience acquired during the development of wearable research studies were discussed and analyzed during bi-weekly virtual meetings to highlight commonalities, strengths, and weaknesses, and to formulate recommendations. Seven major essential components of the experimental design were identified, and recommendations were formulated about: (1) description of study aims, (2) policies and agreements, (3) study population, (4) data collection and technical infrastructure, (5) devices, (6) reporting results, and (7) data sharing. Introducing a framework of methodology standards promotes optimal, accurate, and consistent data collection. It also guarantees that studies are generalizable and comparable, and that results can be replicated, validated, and shared.


Subject(s)
Epilepsy , Wearable Electronic Devices , Data Collection , Epilepsy/diagnosis , Humans , Research Design , Seizures/diagnosis
7.
Sensors (Basel) ; 21(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372419

ABSTRACT

In the past decade, inertial measurement sensors have found their way into many wearable devices where they are used in a broad range of applications, including fitness tracking, step counting, navigation, activity recognition, or motion capturing. One of their key features that is widely used in motion capturing applications is their capability of estimating the orientation of the device and, thus, the orientation of the limb it is attached to. However, tracking a human's motion at reasonable sampling rates comes with the drawback that a substantial amount of data needs to be transmitted between devices or to an end point where all device data is fused into the overall body pose. The communication typically happens wirelessly, which severely drains battery capacity and limits the use time. In this paper, we introduce fastSW, a novel piecewise linear approximation technique that efficiently reduces the amount of data required to be transmitted between devices. It takes advantage of the fact that, during motion, not all limbs are being moved at the same time or at the same speed, and only those devices need to transmit data that actually are being moved or that exceed a certain approximation error threshold. Our technique is efficient in computation time and memory utilization on embedded platforms, with a maximum of 210 instructions on an ARM Cortex-M4 microcontroller. Furthermore, in contrast to similar techniques, our algorithm does not affect the device orientation estimates to deviate from a unit quaternion. In our experiments on a publicly available dataset, our technique is able to compress the data to 10% of its original size, while achieving an average angular deviation of approximately 2° and a maximum angular deviation below 9°.


Subject(s)
Wearable Electronic Devices , Algorithms , Biomechanical Phenomena , Humans , Motion
8.
JMIR Mhealth Uhealth ; 8(11): e21543, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33242017

ABSTRACT

BACKGROUND: Hand tremor typically has a negative impact on a person's ability to complete many common daily activities. Previous research has investigated how to quantify hand tremor with smartphones and wearable sensors, mainly under controlled data collection conditions. Solutions for daily real-life settings remain largely underexplored. OBJECTIVE: Our objective was to monitor and assess hand tremor severity in patients with Parkinson disease (PD), and to better understand the effects of PD medications in a naturalistic environment. METHODS: Using the Welch method, we generated periodograms of accelerometer data and computed signal features to compare patients with varying degrees of PD symptoms. RESULTS: We introduced and empirically evaluated the tremor intensity parameter (TIP), an accelerometer-based metric to quantify hand tremor severity in PD using smartphones. There was a statistically significant correlation between the TIP and self-assessed Unified Parkinson Disease Rating Scale (UPDRS) II tremor scores (Kendall rank correlation test: z=30.521, P<.001, τ=0.5367379; n=11). An analysis of the "before" and "after" medication intake conditions identified a significant difference in accelerometer signal characteristics among participants with different levels of rigidity and bradykinesia (Wilcoxon rank sum test, P<.05). CONCLUSIONS: Our work demonstrates the potential use of smartphone inertial sensors as a systematic symptom severity assessment mechanism to monitor PD symptoms and to assess medication effectiveness remotely. Our smartphone-based monitoring app may also be relevant for other conditions where hand tremor is a prevalent symptom.


Subject(s)
Parkinson Disease , Smartphone , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Tremor/diagnosis
9.
Sensors (Basel) ; 20(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668594

ABSTRACT

Depth imaging has, through recent technological advances, become ubiquitous as products become smaller, more affordable, and more precise. Depth cameras have also emerged as a promising modality for activity recognition as they allow detection of users' body joints and postures. Increased resolutions have now enabled a novel use of depth cameras that facilitate more fine-grained activity descriptors: The remote detection of a person's breathing by picking up the small distance changes from the user's chest over time. We propose in this work a novel method to model chest elevation to robustly monitor a user's respiration, whenever users are sitting or standing, and facing the camera. The method is robust to users occasionally blocking their torso region and is able to provide meaningful breathing features to allow classification in activity recognition tasks. We illustrate that with this method, with specific activities such as paced-breathing meditating, performing breathing exercises, or post-exercise recovery, our model delivers a breathing accuracy that matches that of a commercial respiration chest monitor belt. Results show that the breathing rate can be detected with our method at an accuracy of 92 to 97% from a distance of two metres, outperforming state-of-the-art depth imagining methods especially for non-sedentary persons, and allowing separation of activities in respiration-derived features space.


Subject(s)
Imaging, Three-Dimensional , Monitoring, Physiologic/instrumentation , Posture , Respiration , Humans , Torso
10.
Sensors (Basel) ; 19(14)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336894

ABSTRACT

Photoplethysmography (PPG)-based continuous heart rate monitoring is essential in a number of domains, e.g., for healthcare or fitness applications. Recently, methods based on time-frequency spectra emerged to address the challenges of motion artefact compensation. However, existing approaches are highly parametrised and optimised for specific scenarios of small, public datasets. We address this fragmentation by contributing research into the robustness and generalisation capabilities of PPG-based heart rate estimation approaches. First, we introduce a novel large-scale dataset (called PPG-DaLiA), including a wide range of activities performed under close to real-life conditions. Second, we extend a state-of-the-art algorithm, significantly improving its performance on several datasets. Third, we introduce deep learning to this domain, and investigate various convolutional neural network architectures. Our end-to-end learning approach takes the time-frequency spectra of synchronised PPG- and accelerometer-signals as input, and provides the estimated heart rate as output. Finally, we compare the novel deep learning approach to classical methods, performing evaluation on four public datasets. We show that on large datasets the deep learning model significantly outperforms other methods: The mean absolute error could be reduced by 31 % on the new dataset PPG-DaLiA, and by 21 % on the dataset WESAD.


Subject(s)
Algorithms , Datasets as Topic , Heart Rate/physiology , Neural Networks, Computer , Photoplethysmography/methods , Adolescent , Adult , Artifacts , Databases, Factual , Deep Learning , Exercise/physiology , Female , Humans , Male , Middle Aged , Young Adult
11.
Front Psychol ; 10: 1511, 2019.
Article in English | MEDLINE | ID: mdl-31312162

ABSTRACT

The objective of the present research was to investigate associations of dispositional and momentary self-control and the presence of other individuals consuming SSBs with the consumption frequency of sugar-sweetened beverages (SSBs) in a multi-country pilot study. We conducted an Ambulatory Assessment in which 75 university students (52 females) from four study sites carried smartphones and received prompts six times a day in their everyday environments to capture information regarding momentary self-control and the presence of other individuals consuming SSBs. Multilevel models revealed a statistically significant negative association between dispositional self-control and SSB consumption. Moreover, having more self-control than usual was only beneficial in regard to lower SSB consumption frequency, when other individuals consuming SSBs were not present but not when they were present. The findings support the hypothesis that self-control is an important factor regarding SSB consumption. This early evidence highlights self-control as a candidate to design interventions to promote healthier drinking through improved self-control.

12.
IEEE J Biomed Health Inform ; 19(2): 752-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24876136

ABSTRACT

An ever-growing range of wireless sensors for medical monitoring has shown that there is significant interest in monitoring patients in their everyday surroundings. It however remains a challenge to merge information from several wireless sensors and applications are commonly built from scratch. This paper presents a middleware targeted for medical applications on smartphone-like platforms that relies on an event-based design to enable flexible coupling with changing sets of wireless sensor units, while posing only a minor overhead on the resources and battery capacity of the interconnected devices. We illustrate the requirements for such middleware with three different healthcare applications that were deployed with our middleware solution, and characterize the performance with energy consumption, overhead caused for the smartphone, and processing time under real-world circumstances. Results show that with sensing-intensive applications, our solution only minimally impacts the phone's resources, with an added CPU utilization of 3% and a memory usage under 7 MB. Furthermore, for a minimum message delivery ratio of 99.9%, up to 12 sensor readings per second are guaranteed to be handled, regardless of the number of applications using our middleware.


Subject(s)
Computer Communication Networks , Mobile Applications , Remote Sensing Technology/methods , Smartphone , Wireless Technology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...